1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
|
"""
This module contains the TreeGrower class.
TreeGrowee builds a regression tree fitting a Newton-Raphson step, based on
the gradients and hessians of the training data.
"""
# Author: Nicolas Hug
from heapq import heappush, heappop
import numpy as np
from timeit import default_timer as time
import numbers
from .splitting import Splitter
from .histogram import HistogramBuilder
from .predictor import TreePredictor
from .utils import sum_parallel
from .common import PREDICTOR_RECORD_DTYPE
from .common import Y_DTYPE
from .common import MonotonicConstraint
EPS = np.finfo(Y_DTYPE).eps # to avoid zero division errors
class TreeNode:
"""Tree Node class used in TreeGrower.
This isn't used for prediction purposes, only for training (see
TreePredictor).
Parameters
----------
depth : int
The depth of the node, i.e. its distance from the root.
sample_indices : ndarray of unsigned int, shape (n_samples_at_node,)
The indices of the samples at the node.
sum_gradients : float
The sum of the gradients of the samples at the node.
sum_hessians : float
The sum of the hessians of the samples at the node.
parent : TreeNode or None, optional (default=None)
The parent of the node. None for root.
Attributes
----------
depth : int
The depth of the node, i.e. its distance from the root.
sample_indices : ndarray of unsigned int, shape (n_samples_at_node,)
The indices of the samples at the node.
sum_gradients : float
The sum of the gradients of the samples at the node.
sum_hessians : float
The sum of the hessians of the samples at the node.
parent : TreeNode or None
The parent of the node. None for root.
split_info : SplitInfo or None
The result of the split evaluation.
left_child : TreeNode or None
The left child of the node. None for leaves.
right_child : TreeNode or None
The right child of the node. None for leaves.
value : float or None
The value of the leaf, as computed in finalize_leaf(). None for
non-leaf nodes.
partition_start : int
start position of the node's sample_indices in splitter.partition.
partition_stop : int
stop position of the node's sample_indices in splitter.partition.
"""
split_info = None
left_child = None
right_child = None
histograms = None
sibling = None
parent = None
# start and stop indices of the node in the splitter.partition
# array. Concretely,
# self.sample_indices = view(self.splitter.partition[start:stop])
# Please see the comments about splitter.partition and
# splitter.split_indices for more info about this design.
# These 2 attributes are only used in _update_raw_prediction, because we
# need to iterate over the leaves and I don't know how to efficiently
# store the sample_indices views because they're all of different sizes.
partition_start = 0
partition_stop = 0
def __init__(self, depth, sample_indices, sum_gradients,
sum_hessians, parent=None, value=None):
self.depth = depth
self.sample_indices = sample_indices
self.n_samples = sample_indices.shape[0]
self.sum_gradients = sum_gradients
self.sum_hessians = sum_hessians
self.parent = parent
self.value = value
self.is_leaf = False
self.set_children_bounds(float('-inf'), float('+inf'))
def set_children_bounds(self, lower, upper):
"""Set children values bounds to respect monotonic constraints."""
# These are bounds for the node's *children* values, not the node's
# value. The bounds are used in the splitter when considering potential
# left and right child.
self.children_lower_bound = lower
self.children_upper_bound = upper
def __lt__(self, other_node):
"""Comparison for priority queue.
Nodes with high gain are higher priority than nodes with low gain.
heapq.heappush only need the '<' operator.
heapq.heappop take the smallest item first (smaller is higher
priority).
Parameters
----------
other_node : TreeNode
The node to compare with.
"""
return self.split_info.gain > other_node.split_info.gain
class TreeGrower:
"""Tree grower class used to build a tree.
The tree is fitted to predict the values of a Newton-Raphson step. The
splits are considered in a best-first fashion, and the quality of a
split is defined in splitting._split_gain.
Parameters
----------
X_binned : ndarray of int, shape (n_samples, n_features)
The binned input samples. Must be Fortran-aligned.
gradients : ndarray, shape (n_samples,)
The gradients of each training sample. Those are the gradients of the
loss w.r.t the predictions, evaluated at iteration ``i - 1``.
hessians : ndarray, shape (n_samples,)
The hessians of each training sample. Those are the hessians of the
loss w.r.t the predictions, evaluated at iteration ``i - 1``.
max_leaf_nodes : int or None, optional (default=None)
The maximum number of leaves for each tree. If None, there is no
maximum limit.
max_depth : int or None, optional (default=None)
The maximum depth of each tree. The depth of a tree is the number of
edges to go from the root to the deepest leaf.
Depth isn't constrained by default.
min_samples_leaf : int, optional (default=20)
The minimum number of samples per leaf.
min_gain_to_split : float, optional (default=0.)
The minimum gain needed to split a node. Splits with lower gain will
be ignored.
n_bins : int, optional (default=256)
The total number of bins, including the bin for missing values. Used
to define the shape of the histograms.
n_bins_non_missing_ : array of uint32
For each feature, gives the number of bins actually used for
non-missing values. For features with a lot of unique values, this
is equal to ``n_bins - 1``. If it's an int, all features are
considered to have the same number of bins. If None, all features
are considered to have ``n_bins - 1`` bins.
has_missing_values : ndarray of bool or bool, optional (default=False)
Whether each feature contains missing values (in the training data).
If it's a bool, the same value is used for all features.
l2_regularization : float, optional (default=0)
The L2 regularization parameter.
min_hessian_to_split : float, optional (default=1e-3)
The minimum sum of hessians needed in each node. Splits that result in
at least one child having a sum of hessians less than
``min_hessian_to_split`` are discarded.
shrinkage : float, optional (default=1)
The shrinkage parameter to apply to the leaves values, also known as
learning rate.
"""
def __init__(self, X_binned, gradients, hessians, max_leaf_nodes=None,
max_depth=None, min_samples_leaf=20, min_gain_to_split=0.,
n_bins=256, n_bins_non_missing=None, has_missing_values=False,
monotonic_cst=None, l2_regularization=0.,
min_hessian_to_split=1e-3, shrinkage=1.):
self._validate_parameters(X_binned, max_leaf_nodes, max_depth,
min_samples_leaf, min_gain_to_split,
l2_regularization, min_hessian_to_split)
if n_bins_non_missing is None:
n_bins_non_missing = n_bins - 1
if isinstance(n_bins_non_missing, numbers.Integral):
n_bins_non_missing = np.array(
[n_bins_non_missing] * X_binned.shape[1],
dtype=np.uint32)
else:
n_bins_non_missing = np.asarray(n_bins_non_missing,
dtype=np.uint32)
if isinstance(has_missing_values, bool):
has_missing_values = [has_missing_values] * X_binned.shape[1]
has_missing_values = np.asarray(has_missing_values, dtype=np.uint8)
if monotonic_cst is None:
self.with_monotonic_cst = False
monotonic_cst = np.full(shape=X_binned.shape[1],
fill_value=MonotonicConstraint.NO_CST,
dtype=np.int8)
else:
self.with_monotonic_cst = True
monotonic_cst = np.asarray(monotonic_cst, dtype=np.int8)
if monotonic_cst.shape[0] != X_binned.shape[1]:
raise ValueError(
"monotonic_cst has shape {} but the input data "
"X has {} features.".format(
monotonic_cst.shape[0], X_binned.shape[1]
)
)
if np.any(monotonic_cst < -1) or np.any(monotonic_cst > 1):
raise ValueError(
"monotonic_cst must be None or an array-like of "
"-1, 0 or 1."
)
hessians_are_constant = hessians.shape[0] == 1
self.histogram_builder = HistogramBuilder(
X_binned, n_bins, gradients, hessians, hessians_are_constant)
missing_values_bin_idx = n_bins - 1
self.splitter = Splitter(
X_binned, n_bins_non_missing, missing_values_bin_idx,
has_missing_values, monotonic_cst,
l2_regularization, min_hessian_to_split,
min_samples_leaf, min_gain_to_split, hessians_are_constant)
self.n_bins_non_missing = n_bins_non_missing
self.max_leaf_nodes = max_leaf_nodes
self.has_missing_values = has_missing_values
self.monotonic_cst = monotonic_cst
self.l2_regularization = l2_regularization
self.n_features = X_binned.shape[1]
self.max_depth = max_depth
self.min_samples_leaf = min_samples_leaf
self.X_binned = X_binned
self.min_gain_to_split = min_gain_to_split
self.shrinkage = shrinkage
self.splittable_nodes = []
self.finalized_leaves = []
self.total_find_split_time = 0. # time spent finding the best splits
self.total_compute_hist_time = 0. # time spent computing histograms
self.total_apply_split_time = 0. # time spent splitting nodes
self._intilialize_root(gradients, hessians, hessians_are_constant)
self.n_nodes = 1
def _validate_parameters(self, X_binned, max_leaf_nodes, max_depth,
min_samples_leaf, min_gain_to_split,
l2_regularization, min_hessian_to_split):
"""Validate parameters passed to __init__.
Also validate parameters passed to splitter.
"""
if X_binned.dtype != np.uint8:
raise NotImplementedError(
"X_binned must be of type uint8.")
if not X_binned.flags.f_contiguous:
raise ValueError(
"X_binned should be passed as Fortran contiguous "
"array for maximum efficiency.")
if max_leaf_nodes is not None and max_leaf_nodes <= 1:
raise ValueError('max_leaf_nodes={} should not be'
' smaller than 2'.format(max_leaf_nodes))
if max_depth is not None and max_depth < 1:
raise ValueError('max_depth={} should not be'
' smaller than 1'.format(max_depth))
if min_samples_leaf < 1:
raise ValueError('min_samples_leaf={} should '
'not be smaller than 1'.format(min_samples_leaf))
if min_gain_to_split < 0:
raise ValueError('min_gain_to_split={} '
'must be positive.'.format(min_gain_to_split))
if l2_regularization < 0:
raise ValueError('l2_regularization={} must be '
'positive.'.format(l2_regularization))
if min_hessian_to_split < 0:
raise ValueError('min_hessian_to_split={} '
'must be positive.'.format(min_hessian_to_split))
def grow(self):
"""Grow the tree, from root to leaves."""
while self.splittable_nodes:
self.split_next()
self._apply_shrinkage()
def _apply_shrinkage(self):
"""Multiply leaves values by shrinkage parameter.
This must be done at the very end of the growing process. If this were
done during the growing process e.g. in finalize_leaf(), then a leaf
would be shrunk but its sibling would potentially not be (if it's a
non-leaf), which would lead to a wrong computation of the 'middle'
value needed to enforce the monotonic constraints.
"""
for leaf in self.finalized_leaves:
leaf.value *= self.shrinkage
def _intilialize_root(self, gradients, hessians, hessians_are_constant):
"""Initialize root node and finalize it if needed."""
n_samples = self.X_binned.shape[0]
depth = 0
sum_gradients = sum_parallel(gradients)
if self.histogram_builder.hessians_are_constant:
sum_hessians = hessians[0] * n_samples
else:
sum_hessians = sum_parallel(hessians)
self.root = TreeNode(
depth=depth,
sample_indices=self.splitter.partition,
sum_gradients=sum_gradients,
sum_hessians=sum_hessians,
value=0
)
self.root.partition_start = 0
self.root.partition_stop = n_samples
if self.root.n_samples < 2 * self.min_samples_leaf:
# Do not even bother computing any splitting statistics.
self._finalize_leaf(self.root)
return
if sum_hessians < self.splitter.min_hessian_to_split:
self._finalize_leaf(self.root)
return
self.root.histograms = self.histogram_builder.compute_histograms_brute(
self.root.sample_indices)
self._compute_best_split_and_push(self.root)
def _compute_best_split_and_push(self, node):
"""Compute the best possible split (SplitInfo) of a given node.
Also push it in the heap of splittable nodes if gain isn't zero.
The gain of a node is 0 if either all the leaves are pure
(best gain = 0), or if no split would satisfy the constraints,
(min_hessians_to_split, min_gain_to_split, min_samples_leaf)
"""
node.split_info = self.splitter.find_node_split(
node.n_samples, node.histograms, node.sum_gradients,
node.sum_hessians, node.value, node.children_lower_bound,
node.children_upper_bound)
if node.split_info.gain <= 0: # no valid split
self._finalize_leaf(node)
else:
heappush(self.splittable_nodes, node)
def split_next(self):
"""Split the node with highest potential gain.
Returns
-------
left : TreeNode
The resulting left child.
right : TreeNode
The resulting right child.
"""
# Consider the node with the highest loss reduction (a.k.a. gain)
node = heappop(self.splittable_nodes)
tic = time()
(sample_indices_left,
sample_indices_right,
right_child_pos) = self.splitter.split_indices(node.split_info,
node.sample_indices)
self.total_apply_split_time += time() - tic
depth = node.depth + 1
n_leaf_nodes = len(self.finalized_leaves) + len(self.splittable_nodes)
n_leaf_nodes += 2
left_child_node = TreeNode(depth,
sample_indices_left,
node.split_info.sum_gradient_left,
node.split_info.sum_hessian_left,
parent=node,
value=node.split_info.value_left,
)
right_child_node = TreeNode(depth,
sample_indices_right,
node.split_info.sum_gradient_right,
node.split_info.sum_hessian_right,
parent=node,
value=node.split_info.value_right,
)
left_child_node.sibling = right_child_node
right_child_node.sibling = left_child_node
node.right_child = right_child_node
node.left_child = left_child_node
# set start and stop indices
left_child_node.partition_start = node.partition_start
left_child_node.partition_stop = node.partition_start + right_child_pos
right_child_node.partition_start = left_child_node.partition_stop
right_child_node.partition_stop = node.partition_stop
if not self.has_missing_values[node.split_info.feature_idx]:
# If no missing values are encountered at fit time, then samples
# with missing values during predict() will go to whichever child
# has the most samples.
node.split_info.missing_go_to_left = (
left_child_node.n_samples > right_child_node.n_samples)
self.n_nodes += 2
if (self.max_leaf_nodes is not None
and n_leaf_nodes == self.max_leaf_nodes):
self._finalize_leaf(left_child_node)
self._finalize_leaf(right_child_node)
self._finalize_splittable_nodes()
return left_child_node, right_child_node
if self.max_depth is not None and depth == self.max_depth:
self._finalize_leaf(left_child_node)
self._finalize_leaf(right_child_node)
return left_child_node, right_child_node
if left_child_node.n_samples < self.min_samples_leaf * 2:
self._finalize_leaf(left_child_node)
if right_child_node.n_samples < self.min_samples_leaf * 2:
self._finalize_leaf(right_child_node)
if self.with_monotonic_cst:
# Set value bounds for respecting monotonic constraints
# See test_nodes_values() for details
if (self.monotonic_cst[node.split_info.feature_idx] ==
MonotonicConstraint.NO_CST):
lower_left = lower_right = node.children_lower_bound
upper_left = upper_right = node.children_upper_bound
else:
mid = (left_child_node.value + right_child_node.value) / 2
if (self.monotonic_cst[node.split_info.feature_idx] ==
MonotonicConstraint.POS):
lower_left, upper_left = node.children_lower_bound, mid
lower_right, upper_right = mid, node.children_upper_bound
else: # NEG
lower_left, upper_left = mid, node.children_upper_bound
lower_right, upper_right = node.children_lower_bound, mid
left_child_node.set_children_bounds(lower_left, upper_left)
right_child_node.set_children_bounds(lower_right, upper_right)
# Compute histograms of children, and compute their best possible split
# (if needed)
should_split_left = not left_child_node.is_leaf
should_split_right = not right_child_node.is_leaf
if should_split_left or should_split_right:
# We will compute the histograms of both nodes even if one of them
# is a leaf, since computing the second histogram is very cheap
# (using histogram subtraction).
n_samples_left = left_child_node.sample_indices.shape[0]
n_samples_right = right_child_node.sample_indices.shape[0]
if n_samples_left < n_samples_right:
smallest_child = left_child_node
largest_child = right_child_node
else:
smallest_child = right_child_node
largest_child = left_child_node
# We use the brute O(n_samples) method on the child that has the
# smallest number of samples, and the subtraction trick O(n_bins)
# on the other one.
tic = time()
smallest_child.histograms = \
self.histogram_builder.compute_histograms_brute(
smallest_child.sample_indices)
largest_child.histograms = \
self.histogram_builder.compute_histograms_subtraction(
node.histograms, smallest_child.histograms)
self.total_compute_hist_time += time() - tic
tic = time()
if should_split_left:
self._compute_best_split_and_push(left_child_node)
if should_split_right:
self._compute_best_split_and_push(right_child_node)
self.total_find_split_time += time() - tic
return left_child_node, right_child_node
def _finalize_leaf(self, node):
"""Make node a leaf of the tree being grown."""
node.is_leaf = True
self.finalized_leaves.append(node)
def _finalize_splittable_nodes(self):
"""Transform all splittable nodes into leaves.
Used when some constraint is met e.g. maximum number of leaves or
maximum depth."""
while len(self.splittable_nodes) > 0:
node = self.splittable_nodes.pop()
self._finalize_leaf(node)
def make_predictor(self, bin_thresholds=None):
"""Make a TreePredictor object out of the current tree.
Parameters
----------
bin_thresholds : array-like of floats, optional (default=None)
The actual thresholds values of each bin.
Returns
-------
A TreePredictor object.
"""
predictor_nodes = np.zeros(self.n_nodes, dtype=PREDICTOR_RECORD_DTYPE)
_fill_predictor_node_array(predictor_nodes, self.root,
bin_thresholds, self.n_bins_non_missing)
return TreePredictor(predictor_nodes)
def _fill_predictor_node_array(predictor_nodes, grower_node,
bin_thresholds, n_bins_non_missing,
next_free_idx=0):
"""Helper used in make_predictor to set the TreePredictor fields."""
node = predictor_nodes[next_free_idx]
node['count'] = grower_node.n_samples
node['depth'] = grower_node.depth
if grower_node.split_info is not None:
node['gain'] = grower_node.split_info.gain
else:
node['gain'] = -1
node['value'] = grower_node.value
if grower_node.is_leaf:
# Leaf node
node['is_leaf'] = True
return next_free_idx + 1
else:
# Decision node
split_info = grower_node.split_info
feature_idx, bin_idx = split_info.feature_idx, split_info.bin_idx
node['feature_idx'] = feature_idx
node['bin_threshold'] = bin_idx
node['missing_go_to_left'] = split_info.missing_go_to_left
if split_info.bin_idx == n_bins_non_missing[feature_idx] - 1:
# Split is on the last non-missing bin: it's a "split on nans". All
# nans go to the right, the rest go to the left.
node['threshold'] = np.inf
elif bin_thresholds is not None:
node['threshold'] = bin_thresholds[feature_idx][bin_idx]
next_free_idx += 1
node['left'] = next_free_idx
next_free_idx = _fill_predictor_node_array(
predictor_nodes, grower_node.left_child,
bin_thresholds=bin_thresholds,
n_bins_non_missing=n_bins_non_missing,
next_free_idx=next_free_idx)
node['right'] = next_free_idx
return _fill_predictor_node_array(
predictor_nodes, grower_node.right_child,
bin_thresholds=bin_thresholds,
n_bins_non_missing=n_bins_non_missing,
next_free_idx=next_free_idx)
|