File: splitting.pyx

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (823 lines) | stat: -rw-r--r-- 34,892 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
# cython: cdivision=True
# cython: boundscheck=False
# cython: wraparound=False
# cython: language_level=3
"""This module contains routines and data structures to:

- Find the best possible split of a node. For a given node, a split is
  characterized by a feature and a bin.
- Apply a split to a node, i.e. split the indices of the samples at the node
  into the newly created left and right childs.
"""
# Author: Nicolas Hug

cimport cython
from cython.parallel import prange
import numpy as np
cimport numpy as np
IF SKLEARN_OPENMP_PARALLELISM_ENABLED:
    from openmp cimport omp_get_max_threads
from libc.stdlib cimport malloc, free
from libc.string cimport memcpy
from numpy.math cimport INFINITY

from .common cimport X_BINNED_DTYPE_C
from .common cimport Y_DTYPE_C
from .common cimport hist_struct
from .common import HISTOGRAM_DTYPE
from .common cimport MonotonicConstraint

np.import_array()


cdef struct split_info_struct:
    # Same as the SplitInfo class, but we need a C struct to use it in the
    # nogil sections and to use in arrays.
    Y_DTYPE_C gain
    int feature_idx
    unsigned int bin_idx
    unsigned char missing_go_to_left
    Y_DTYPE_C sum_gradient_left
    Y_DTYPE_C sum_gradient_right
    Y_DTYPE_C sum_hessian_left
    Y_DTYPE_C sum_hessian_right
    unsigned int n_samples_left
    unsigned int n_samples_right
    Y_DTYPE_C value_left
    Y_DTYPE_C value_right


class SplitInfo:
    """Pure data class to store information about a potential split.

    Parameters
    ----------
    gain : float
        The gain of the split.
    feature_idx : int
        The index of the feature to be split.
    bin_idx : int
        The index of the bin on which the split is made.
    missing_go_to_left : bool
        Whether missing values should go to the left child.
    sum_gradient_left : float
        The sum of the gradients of all the samples in the left child.
    sum_hessian_left : float
        The sum of the hessians of all the samples in the left child.
    sum_gradient_right : float
        The sum of the gradients of all the samples in the right child.
    sum_hessian_right : float
        The sum of the hessians of all the samples in the right child.
    n_samples_left : int, default=0
        The number of samples in the left child.
    n_samples_right : int
        The number of samples in the right child.
    """
    def __init__(self, gain, feature_idx, bin_idx,
                 missing_go_to_left, sum_gradient_left, sum_hessian_left,
                 sum_gradient_right, sum_hessian_right, n_samples_left,
                 n_samples_right, value_left, value_right):
        self.gain = gain
        self.feature_idx = feature_idx
        self.bin_idx = bin_idx
        self.missing_go_to_left = missing_go_to_left
        self.sum_gradient_left = sum_gradient_left
        self.sum_hessian_left = sum_hessian_left
        self.sum_gradient_right = sum_gradient_right
        self.sum_hessian_right = sum_hessian_right
        self.n_samples_left = n_samples_left
        self.n_samples_right = n_samples_right
        self.value_left = value_left
        self.value_right = value_right


@cython.final
cdef class Splitter:
    """Splitter used to find the best possible split at each node.

    A split (see SplitInfo) is characterized by a feature and a bin.

    The Splitter is also responsible for partitioning the samples among the
    leaves of the tree (see split_indices() and the partition attribute).

    Parameters
    ----------
    X_binned : ndarray of int, shape (n_samples, n_features)
        The binned input samples. Must be Fortran-aligned.
    n_bins_non_missing : ndarray, shape (n_features,)
        For each feature, gives the number of bins actually used for
        non-missing values.
    missing_values_bin_idx : uint8
        Index of the bin that is used for missing values. This is the index of
        the last bin and is always equal to max_bins (as passed to the GBDT
        classes), or equivalently to n_bins - 1.
    has_missing_values : ndarray, shape (n_features,)
        Whether missing values were observed in the training data, for each
        feature.
    l2_regularization : float
        The L2 regularization parameter.
    min_hessian_to_split : float, default=1e-3
        The minimum sum of hessians needed in each node. Splits that result in
        at least one child having a sum of hessians less than
        min_hessian_to_split are discarded.
    min_samples_leaf : int, default=20
        The minimum number of samples per leaf.
    min_gain_to_split : float, default=0.0
        The minimum gain needed to split a node. Splits with lower gain will
        be ignored.
    hessians_are_constant: bool, default is False
        Whether hessians are constant.
    """
    cdef public:
        const X_BINNED_DTYPE_C [::1, :] X_binned
        unsigned int n_features
        const unsigned int [::1] n_bins_non_missing
        unsigned char missing_values_bin_idx
        const unsigned char [::1] has_missing_values
        const signed char [::1] monotonic_cst
        unsigned char hessians_are_constant
        Y_DTYPE_C l2_regularization
        Y_DTYPE_C min_hessian_to_split
        unsigned int min_samples_leaf
        Y_DTYPE_C min_gain_to_split

        unsigned int [::1] partition
        unsigned int [::1] left_indices_buffer
        unsigned int [::1] right_indices_buffer

    def __init__(self,
                 const X_BINNED_DTYPE_C [::1, :] X_binned,
                 const unsigned int [::1] n_bins_non_missing,
                 const unsigned char missing_values_bin_idx,
                 const unsigned char [::1] has_missing_values,
                 const signed char [::1] monotonic_cst,
                 Y_DTYPE_C l2_regularization,
                 Y_DTYPE_C min_hessian_to_split=1e-3,
                 unsigned int min_samples_leaf=20,
                 Y_DTYPE_C min_gain_to_split=0.,
                 unsigned char hessians_are_constant=False):

        self.X_binned = X_binned
        self.n_features = X_binned.shape[1]
        self.n_bins_non_missing = n_bins_non_missing
        self.missing_values_bin_idx = missing_values_bin_idx
        self.has_missing_values = has_missing_values
        self.monotonic_cst = monotonic_cst
        self.l2_regularization = l2_regularization
        self.min_hessian_to_split = min_hessian_to_split
        self.min_samples_leaf = min_samples_leaf
        self.min_gain_to_split = min_gain_to_split
        self.hessians_are_constant = hessians_are_constant

        # The partition array maps each sample index into the leaves of the
        # tree (a leaf in this context is a node that isn't splitted yet, not
        # necessarily a 'finalized' leaf). Initially, the root contains all
        # the indices, e.g.:
        # partition = [abcdefghijkl]
        # After a call to split_indices, it may look e.g. like this:
        # partition = [cef|abdghijkl]
        # we have 2 leaves, the left one is at position 0 and the second one at
        # position 3. The order of the samples is irrelevant.
        self.partition = np.arange(X_binned.shape[0], dtype=np.uint32)
        # buffers used in split_indices to support parallel splitting.
        self.left_indices_buffer = np.empty_like(self.partition)
        self.right_indices_buffer = np.empty_like(self.partition)

    def split_indices(Splitter self, split_info, unsigned int [::1]
                      sample_indices):
        """Split samples into left and right arrays.

        The split is performed according to the best possible split
        (split_info).

        Ultimately, this is nothing but a partition of the sample_indices
        array with a given pivot, exactly like a quicksort subroutine.

        Parameters
        ----------
        split_info : SplitInfo
            The SplitInfo of the node to split.
        sample_indices : ndarray of unsigned int, shape (n_samples_at_node,)
            The indices of the samples at the node to split. This is a view
            on self.partition, and it is modified inplace by placing the
            indices of the left child at the beginning, and the indices of
            the right child at the end.

        Returns
        -------
        left_indices : ndarray of int, shape (n_left_samples,)
            The indices of the samples in the left child. This is a view on
            self.partition.
        right_indices : ndarray of int, shape (n_right_samples,)
            The indices of the samples in the right child. This is a view on
            self.partition.
        right_child_position : int
            The position of the right child in ``sample_indices``.
        """
        # This is a multi-threaded implementation inspired by lightgbm. Here
        # is a quick break down. Let's suppose we want to split a node with 24
        # samples named from a to x. self.partition looks like this (the * are
        # indices in other leaves that we don't care about):
        # partition = [*************abcdefghijklmnopqrstuvwx****************]
        #                           ^                       ^
        #                     node_position     node_position + node.n_samples

        # Ultimately, we want to reorder the samples inside the boundaries of
        # the leaf (which becomes a node) to now represent the samples in its
        # left and right child. For example:
        # partition = [*************abefilmnopqrtuxcdghjksvw*****************]
        #                           ^              ^
        #                   left_child_pos     right_child_pos
        # Note that left_child_pos always takes the value of node_position,
        # and right_child_pos = left_child_pos + left_child.n_samples. The
        # order of the samples inside a leaf is irrelevant.

        # 1. sample_indices is a view on this region a..x. We conceptually
        #    divide it into n_threads regions. Each thread will be responsible
        #    for its own region. Here is an example with 4 threads:
        #    sample_indices = [abcdef|ghijkl|mnopqr|stuvwx]
        # 2. Each thread processes 6 = 24 // 4 entries and maps them into
        #    left_indices_buffer or right_indices_buffer. For example, we could
        #    have the following mapping ('.' denotes an undefined entry):
        #    - left_indices_buffer =  [abef..|il....|mnopqr|tux...]
        #    - right_indices_buffer = [cd....|ghjk..|......|svw...]
        # 3. We keep track of the start positions of the regions (the '|') in
        #    ``offset_in_buffers`` as well as the size of each region. We also
        #    keep track of the number of samples put into the left/right child
        #    by each thread. Concretely:
        #    - left_counts =  [4, 2, 6, 3]
        #    - right_counts = [2, 4, 0, 3]
        # 4. Finally, we put left/right_indices_buffer back into the
        #    sample_indices, without any undefined entries and the partition
        #    looks as expected
        #    partition = [*************abefilmnopqrtuxcdghjksvw***************]

        # Note: We here show left/right_indices_buffer as being the same size
        # as sample_indices for simplicity, but in reality they are of the
        # same size as partition.

        cdef:
            int n_samples = sample_indices.shape[0]
            X_BINNED_DTYPE_C bin_idx = split_info.bin_idx
            unsigned char missing_go_to_left = split_info.missing_go_to_left
            unsigned char missing_values_bin_idx = self.missing_values_bin_idx
            int feature_idx = split_info.feature_idx
            const X_BINNED_DTYPE_C [::1] X_binned = \
                self.X_binned[:, feature_idx]
            unsigned int [::1] left_indices_buffer = self.left_indices_buffer
            unsigned int [::1] right_indices_buffer = self.right_indices_buffer

            IF SKLEARN_OPENMP_PARALLELISM_ENABLED:
                int n_threads = omp_get_max_threads()
            ELSE:
                int n_threads = 1

            int [:] sizes = np.full(n_threads, n_samples // n_threads,
                                    dtype=np.int32)
            int [:] offset_in_buffers = np.zeros(n_threads, dtype=np.int32)
            int [:] left_counts = np.empty(n_threads, dtype=np.int32)
            int [:] right_counts = np.empty(n_threads, dtype=np.int32)
            int left_count
            int right_count
            int start
            int stop
            int i
            int thread_idx
            int sample_idx
            int right_child_position
            unsigned char turn_left
            int [:] left_offset = np.zeros(n_threads, dtype=np.int32)
            int [:] right_offset = np.zeros(n_threads, dtype=np.int32)

        with nogil:
            for thread_idx in range(n_samples % n_threads):
                sizes[thread_idx] += 1

            for thread_idx in range(1, n_threads):
                offset_in_buffers[thread_idx] = \
                    offset_in_buffers[thread_idx - 1] + sizes[thread_idx - 1]

            # map indices from sample_indices to left/right_indices_buffer
            for thread_idx in prange(n_threads, schedule='static',
                                     chunksize=1):
                left_count = 0
                right_count = 0

                start = offset_in_buffers[thread_idx]
                stop = start + sizes[thread_idx]
                for i in range(start, stop):
                    sample_idx = sample_indices[i]
                    turn_left = sample_goes_left(
                        missing_go_to_left,
                        missing_values_bin_idx, bin_idx,
                        X_binned[sample_idx])

                    if turn_left:
                        left_indices_buffer[start + left_count] = sample_idx
                        left_count = left_count + 1
                    else:
                        right_indices_buffer[start + right_count] = sample_idx
                        right_count = right_count + 1

                left_counts[thread_idx] = left_count
                right_counts[thread_idx] = right_count

            # position of right child = just after the left child
            right_child_position = 0
            for thread_idx in range(n_threads):
                right_child_position += left_counts[thread_idx]

            # offset of each thread in sample_indices for left and right
            # child, i.e. where each thread will start to write.
            right_offset[0] = right_child_position
            for thread_idx in range(1, n_threads):
                left_offset[thread_idx] = \
                    left_offset[thread_idx - 1] + left_counts[thread_idx - 1]
                right_offset[thread_idx] = \
                    right_offset[thread_idx - 1] + right_counts[thread_idx - 1]

            # map indices in left/right_indices_buffer back into
            # sample_indices. This also updates self.partition since
            # sample_indices is a view.
            for thread_idx in prange(n_threads, schedule='static',
                                     chunksize=1):
                memcpy(
                    &sample_indices[left_offset[thread_idx]],
                    &left_indices_buffer[offset_in_buffers[thread_idx]],
                    sizeof(unsigned int) * left_counts[thread_idx]
                )
                memcpy(
                    &sample_indices[right_offset[thread_idx]],
                    &right_indices_buffer[offset_in_buffers[thread_idx]],
                    sizeof(unsigned int) * right_counts[thread_idx]
                )

        return (sample_indices[:right_child_position],
                sample_indices[right_child_position:],
                right_child_position)

    def find_node_split(
            Splitter self,
            unsigned int n_samples,
            hist_struct [:, ::1] histograms,  # IN
            const Y_DTYPE_C sum_gradients,
            const Y_DTYPE_C sum_hessians,
            const Y_DTYPE_C value,
            const Y_DTYPE_C lower_bound=-INFINITY,
            const Y_DTYPE_C upper_bound=INFINITY,
            ):
        """For each feature, find the best bin to split on at a given node.

        Return the best split info among all features.

        Parameters
        ----------
        n_samples : int
            The number of samples at the node.
        histograms : ndarray of HISTOGRAM_DTYPE of \
                shape (n_features, max_bins)
            The histograms of the current node.
        sum_gradients : float
            The sum of the gradients for each sample at the node.
        sum_hessians : float
            The sum of the hessians for each sample at the node.
        value : float
            The bounded value of the current node. We directly pass the value
            instead of re-computing it from sum_gradients and sum_hessians,
            because we need to compute the loss and the gain based on the
            *bounded* value: computing the value from
            sum_gradients / sum_hessians would give the unbounded value, and
            the interaction with min_gain_to_split would not be correct
            anymore. Side note: we can't use the lower_bound / upper_bound
            parameters either because these refer to the bounds of the
            children, not the bounds of the current node.
        lower_bound : float
            Lower bound for the children values for respecting the monotonic
            constraints.
        upper_bound : float
            Upper bound for the children values for respecting the monotonic
            constraints.

        Returns
        -------
        best_split_info : SplitInfo
            The info about the best possible split among all features.
        """
        cdef:
            int feature_idx
            int best_feature_idx
            int n_features = self.n_features
            split_info_struct split_info
            split_info_struct * split_infos
            const unsigned char [::1] has_missing_values = self.has_missing_values
            const signed char [::1] monotonic_cst = self.monotonic_cst

        with nogil:

            split_infos = <split_info_struct *> malloc(
                self.n_features * sizeof(split_info_struct))

            for feature_idx in prange(n_features, schedule='static'):
                split_infos[feature_idx].feature_idx = feature_idx

                # For each feature, find best bin to split on
                # Start with a gain of -1 (if no better split is found, that
                # means one of the constraints isn't respected
                # (min_samples_leaf, etc) and the grower will later turn the
                # node into a leaf.
                split_infos[feature_idx].gain = -1

                # We will scan bins from left to right (in all cases), and if
                # there are any missing values, we will also scan bins from
                # right to left. This way, we can consider whichever case
                # yields the best gain: either missing values go to the right
                # (left to right scan) or to the left (right to left case).
                # See algo 3 from the XGBoost paper
                # https://arxiv.org/abs/1603.02754

                self._find_best_bin_to_split_left_to_right(
                    feature_idx, has_missing_values[feature_idx],
                    histograms, n_samples, sum_gradients, sum_hessians,
                    value, monotonic_cst[feature_idx],
                    lower_bound, upper_bound, &split_infos[feature_idx])

                if has_missing_values[feature_idx]:
                    # We need to explore both directions to check whether
                    # sending the nans to the left child would lead to a higher
                    # gain
                    self._find_best_bin_to_split_right_to_left(
                        feature_idx, histograms, n_samples,
                        sum_gradients, sum_hessians,
                        value, monotonic_cst[feature_idx],
                        lower_bound, upper_bound, &split_infos[feature_idx])

            # then compute best possible split among all features
            best_feature_idx = self._find_best_feature_to_split_helper(
                split_infos)
            split_info = split_infos[best_feature_idx]

        out = SplitInfo(
            split_info.gain,
            split_info.feature_idx,
            split_info.bin_idx,
            split_info.missing_go_to_left,
            split_info.sum_gradient_left,
            split_info.sum_hessian_left,
            split_info.sum_gradient_right,
            split_info.sum_hessian_right,
            split_info.n_samples_left,
            split_info.n_samples_right,
            split_info.value_left,
            split_info.value_right,
        )
        free(split_infos)
        return out

    cdef unsigned int _find_best_feature_to_split_helper(
            self,
            split_info_struct * split_infos) nogil:  # IN
        """Returns the best feature among those in splits_infos."""
        cdef:
            unsigned int feature_idx
            unsigned int best_feature_idx = 0

        for feature_idx in range(1, self.n_features):
            if (split_infos[feature_idx].gain >
                    split_infos[best_feature_idx].gain):
                best_feature_idx = feature_idx
        return best_feature_idx

    cdef void _find_best_bin_to_split_left_to_right(
            Splitter self,
            unsigned int feature_idx,
            unsigned char has_missing_values,
            const hist_struct [:, ::1] histograms,  # IN
            unsigned int n_samples,
            Y_DTYPE_C sum_gradients,
            Y_DTYPE_C sum_hessians,
            Y_DTYPE_C value,
            signed char monotonic_cst,
            Y_DTYPE_C lower_bound,
            Y_DTYPE_C upper_bound,
            split_info_struct * split_info) nogil:  # OUT
        """Find best bin to split on for a given feature.

        Splits that do not satisfy the splitting constraints
        (min_gain_to_split, etc.) are discarded here.

        We scan node from left to right. This version is called whether there
        are missing values or not. If any, missing values are assigned to the
        right node.
        """
        cdef:
            unsigned int bin_idx
            unsigned int n_samples_left
            unsigned int n_samples_right
            unsigned int n_samples_ = n_samples
            # We set the 'end' variable such that the last non-missing-values
            # bin never goes to the left child (which would result in and
            # empty right child), unless there are missing values, since these
            # would go to the right child.
            unsigned int end = \
                self.n_bins_non_missing[feature_idx] - 1 + has_missing_values
            Y_DTYPE_C sum_hessian_left
            Y_DTYPE_C sum_hessian_right
            Y_DTYPE_C sum_gradient_left
            Y_DTYPE_C sum_gradient_right
            Y_DTYPE_C loss_current_node
            Y_DTYPE_C gain
            unsigned char found_better_split = False

            Y_DTYPE_C best_sum_hessian_left
            Y_DTYPE_C best_sum_gradient_left
            unsigned int best_bin_idx
            unsigned int best_n_samples_left
            Y_DTYPE_C best_gain = -1

        sum_gradient_left, sum_hessian_left = 0., 0.
        n_samples_left = 0

        loss_current_node = _loss_from_value(value, sum_gradients)

        for bin_idx in range(end):
            n_samples_left += histograms[feature_idx, bin_idx].count
            n_samples_right = n_samples_ - n_samples_left

            if self.hessians_are_constant:
                sum_hessian_left += histograms[feature_idx, bin_idx].count
            else:
                sum_hessian_left += \
                    histograms[feature_idx, bin_idx].sum_hessians
            sum_hessian_right = sum_hessians - sum_hessian_left

            sum_gradient_left += histograms[feature_idx, bin_idx].sum_gradients
            sum_gradient_right = sum_gradients - sum_gradient_left

            if n_samples_left < self.min_samples_leaf:
                continue
            if n_samples_right < self.min_samples_leaf:
                # won't get any better
                break

            if sum_hessian_left < self.min_hessian_to_split:
                continue
            if sum_hessian_right < self.min_hessian_to_split:
                # won't get any better (hessians are > 0 since loss is convex)
                break

            gain = _split_gain(sum_gradient_left, sum_hessian_left,
                               sum_gradient_right, sum_hessian_right,
                               loss_current_node,
                               monotonic_cst,
                               lower_bound,
                               upper_bound,
                               self.l2_regularization)

            if gain > best_gain and gain > self.min_gain_to_split:
                found_better_split = True
                best_gain = gain
                best_bin_idx = bin_idx
                best_sum_gradient_left = sum_gradient_left
                best_sum_hessian_left = sum_hessian_left
                best_n_samples_left = n_samples_left

        if found_better_split:
            split_info.gain = best_gain
            split_info.bin_idx = best_bin_idx
            # we scan from left to right so missing values go to the right
            split_info.missing_go_to_left = False
            split_info.sum_gradient_left = best_sum_gradient_left
            split_info.sum_gradient_right = sum_gradients - best_sum_gradient_left
            split_info.sum_hessian_left = best_sum_hessian_left
            split_info.sum_hessian_right = sum_hessians - best_sum_hessian_left
            split_info.n_samples_left = best_n_samples_left
            split_info.n_samples_right = n_samples - best_n_samples_left

            # We recompute best values here but it's cheap
            split_info.value_left = compute_node_value(
                split_info.sum_gradient_left, split_info.sum_hessian_left,
                lower_bound, upper_bound, self.l2_regularization)

            split_info.value_right = compute_node_value(
                split_info.sum_gradient_right, split_info.sum_hessian_right,
                lower_bound, upper_bound, self.l2_regularization)

    cdef void _find_best_bin_to_split_right_to_left(
            self,
            unsigned int feature_idx,
            const hist_struct [:, ::1] histograms,  # IN
            unsigned int n_samples,
            Y_DTYPE_C sum_gradients,
            Y_DTYPE_C sum_hessians,
            Y_DTYPE_C value,
            signed char monotonic_cst,
            Y_DTYPE_C lower_bound,
            Y_DTYPE_C upper_bound,
            split_info_struct * split_info) nogil:  # OUT
        """Find best bin to split on for a given feature.

        Splits that do not satisfy the splitting constraints
        (min_gain_to_split, etc.) are discarded here.

        We scan node from right to left. This version is only called when
        there are missing values. Missing values are assigned to the left
        child.

        If no missing value are present in the data this method isn't called
        since only calling _find_best_bin_to_split_left_to_right is enough.
        """

        cdef:
            unsigned int bin_idx
            unsigned int n_samples_left
            unsigned int n_samples_right
            unsigned int n_samples_ = n_samples
            Y_DTYPE_C sum_hessian_left
            Y_DTYPE_C sum_hessian_right
            Y_DTYPE_C sum_gradient_left
            Y_DTYPE_C sum_gradient_right
            Y_DTYPE_C loss_current_node
            Y_DTYPE_C gain
            unsigned int start = self.n_bins_non_missing[feature_idx] - 2
            unsigned char found_better_split = False

            Y_DTYPE_C best_sum_hessian_left
            Y_DTYPE_C best_sum_gradient_left
            unsigned int best_bin_idx
            unsigned int best_n_samples_left
            Y_DTYPE_C best_gain = split_info.gain  # computed during previous scan

        sum_gradient_right, sum_hessian_right = 0., 0.
        n_samples_right = 0

        loss_current_node = _loss_from_value(value, sum_gradients)

        for bin_idx in range(start, -1, -1):
            n_samples_right += histograms[feature_idx, bin_idx + 1].count
            n_samples_left = n_samples_ - n_samples_right

            if self.hessians_are_constant:
                sum_hessian_right += histograms[feature_idx, bin_idx + 1].count
            else:
                sum_hessian_right += \
                    histograms[feature_idx, bin_idx + 1].sum_hessians
            sum_hessian_left = sum_hessians - sum_hessian_right

            sum_gradient_right += \
                histograms[feature_idx, bin_idx + 1].sum_gradients
            sum_gradient_left = sum_gradients - sum_gradient_right

            if n_samples_right < self.min_samples_leaf:
                continue
            if n_samples_left < self.min_samples_leaf:
                # won't get any better
                break

            if sum_hessian_right < self.min_hessian_to_split:
                continue
            if sum_hessian_left < self.min_hessian_to_split:
                # won't get any better (hessians are > 0 since loss is convex)
                break

            gain = _split_gain(sum_gradient_left, sum_hessian_left,
                               sum_gradient_right, sum_hessian_right,
                               loss_current_node,
                               monotonic_cst,
                               lower_bound,
                               upper_bound,
                               self.l2_regularization)

            if gain > best_gain and gain > self.min_gain_to_split:
                found_better_split = True
                best_gain = gain
                best_bin_idx = bin_idx
                best_sum_gradient_left = sum_gradient_left
                best_sum_hessian_left = sum_hessian_left
                best_n_samples_left = n_samples_left

        if found_better_split:
            split_info.gain = best_gain
            split_info.bin_idx = best_bin_idx
            # we scan from right to left so missing values go to the left
            split_info.missing_go_to_left = True
            split_info.sum_gradient_left = best_sum_gradient_left
            split_info.sum_gradient_right = sum_gradients - best_sum_gradient_left
            split_info.sum_hessian_left = best_sum_hessian_left
            split_info.sum_hessian_right = sum_hessians - best_sum_hessian_left
            split_info.n_samples_left = best_n_samples_left
            split_info.n_samples_right = n_samples - best_n_samples_left

            # We recompute best values here but it's cheap
            split_info.value_left = compute_node_value(
                split_info.sum_gradient_left, split_info.sum_hessian_left,
                lower_bound, upper_bound, self.l2_regularization)

            split_info.value_right = compute_node_value(
                split_info.sum_gradient_right, split_info.sum_hessian_right,
                lower_bound, upper_bound, self.l2_regularization)


cdef inline Y_DTYPE_C _split_gain(
        Y_DTYPE_C sum_gradient_left,
        Y_DTYPE_C sum_hessian_left,
        Y_DTYPE_C sum_gradient_right,
        Y_DTYPE_C sum_hessian_right,
        Y_DTYPE_C loss_current_node,
        signed char monotonic_cst,
        Y_DTYPE_C lower_bound,
        Y_DTYPE_C upper_bound,
        Y_DTYPE_C l2_regularization) nogil:
    """Loss reduction

    Compute the reduction in loss after taking a split, compared to keeping
    the node a leaf of the tree.

    See Equation 7 of:
    XGBoost: A Scalable Tree Boosting System, T. Chen, C. Guestrin, 2016
    https://arxiv.org/abs/1603.02754
    """
    cdef:
        Y_DTYPE_C gain
        Y_DTYPE_C value_left
        Y_DTYPE_C value_right

    # Compute values of potential left and right children
    value_left = compute_node_value(sum_gradient_left, sum_hessian_left,
                                    lower_bound, upper_bound,
                                    l2_regularization)
    value_right = compute_node_value(sum_gradient_right, sum_hessian_right,
                                    lower_bound, upper_bound,
                                    l2_regularization)

    if ((monotonic_cst == MonotonicConstraint.POS and value_left > value_right) or
            (monotonic_cst == MonotonicConstraint.NEG and value_left < value_right)):
        # don't consider this split since it does not respect the monotonic
        # constraints. Note that these comparisons need to be done on values
        # that have already been clipped to take the monotonic constraints into
        # account (if any).
        return -1

    gain = loss_current_node
    gain -= _loss_from_value(value_left, sum_gradient_left)
    gain -= _loss_from_value(value_right, sum_gradient_right)
    # Note that for the gain to be correct (and for min_gain_to_split to work
    # as expected), we need all values to be bounded (current node, left child
    # and right child).

    return gain

cdef inline Y_DTYPE_C _loss_from_value(
        Y_DTYPE_C value,
        Y_DTYPE_C sum_gradient) nogil:
    """Return loss of a node from its (bounded) value

    See Equation 6 of:
    XGBoost: A Scalable Tree Boosting System, T. Chen, C. Guestrin, 2016
    https://arxiv.org/abs/1603.02754
    """
    return sum_gradient * value

cdef inline unsigned char sample_goes_left(
        unsigned char missing_go_to_left,
        unsigned char missing_values_bin_idx,
        X_BINNED_DTYPE_C split_bin_idx,
        X_BINNED_DTYPE_C bin_value) nogil:
    """Helper to decide whether sample should go to left or right child."""

    return (
        (
            missing_go_to_left and
            bin_value == missing_values_bin_idx
        )
        or (
            bin_value <= split_bin_idx
        ))


cpdef inline Y_DTYPE_C compute_node_value(
        Y_DTYPE_C sum_gradient,
        Y_DTYPE_C sum_hessian,
        Y_DTYPE_C lower_bound,
        Y_DTYPE_C upper_bound,
        Y_DTYPE_C l2_regularization) nogil:
    """Compute a node's value.

    The value is capped in the [lower_bound, upper_bound] interval to respect
    monotonic constraints. Shrinkage is ignored.

    See Equation 5 of:
    XGBoost: A Scalable Tree Boosting System, T. Chen, C. Guestrin, 2016
    https://arxiv.org/abs/1603.02754
    """

    cdef:
        Y_DTYPE_C value

    value = -sum_gradient / (sum_hessian + l2_regularization + 1e-15)

    if value < lower_bound:
        value = lower_bound
    elif value > upper_bound:
        value = upper_bound

    return value