1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.datasets import make_classification, make_regression
import numpy as np
import pytest
# To use this experimental feature, we need to explicitly ask for it:
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.ensemble._hist_gradient_boosting.binning import _BinMapper
from sklearn.ensemble._hist_gradient_boosting.utils import (
get_equivalent_estimator)
@pytest.mark.parametrize('seed', range(5))
@pytest.mark.parametrize('min_samples_leaf', (1, 20))
@pytest.mark.parametrize('n_samples, max_leaf_nodes', [
(255, 4096),
(1000, 8),
])
def test_same_predictions_regression(seed, min_samples_leaf, n_samples,
max_leaf_nodes):
# Make sure sklearn has the same predictions as lightgbm for easy targets.
#
# In particular when the size of the trees are bound and the number of
# samples is large enough, the structure of the prediction trees found by
# LightGBM and sklearn should be exactly identical.
#
# Notes:
# - Several candidate splits may have equal gains when the number of
# samples in a node is low (and because of float errors). Therefore the
# predictions on the test set might differ if the structure of the tree
# is not exactly the same. To avoid this issue we only compare the
# predictions on the test set when the number of samples is large enough
# and max_leaf_nodes is low enough.
# - To ignore discrepancies caused by small differences the binning
# strategy, data is pre-binned if n_samples > 255.
# - We don't check the least_absolute_deviation loss here. This is because
# LightGBM's computation of the median (used for the initial value of
# raw_prediction) is a bit off (they'll e.g. return midpoints when there
# is no need to.). Since these tests only run 1 iteration, the
# discrepancy between the initial values leads to biggish differences in
# the predictions. These differences are much smaller with more
# iterations.
pytest.importorskip("lightgbm")
rng = np.random.RandomState(seed=seed)
n_samples = n_samples
max_iter = 1
max_bins = 255
X, y = make_regression(n_samples=n_samples, n_features=5,
n_informative=5, random_state=0)
if n_samples > 255:
# bin data and convert it to float32 so that the estimator doesn't
# treat it as pre-binned
X = _BinMapper(n_bins=max_bins + 1).fit_transform(X).astype(np.float32)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)
est_sklearn = HistGradientBoostingRegressor(
max_iter=max_iter,
max_bins=max_bins,
learning_rate=1,
early_stopping=False,
min_samples_leaf=min_samples_leaf,
max_leaf_nodes=max_leaf_nodes)
est_lightgbm = get_equivalent_estimator(est_sklearn, lib='lightgbm')
est_lightgbm.fit(X_train, y_train)
est_sklearn.fit(X_train, y_train)
# We need X to be treated an numerical data, not pre-binned data.
X_train, X_test = X_train.astype(np.float32), X_test.astype(np.float32)
pred_lightgbm = est_lightgbm.predict(X_train)
pred_sklearn = est_sklearn.predict(X_train)
# less than 1% of the predictions are different up to the 3rd decimal
assert np.mean(abs(pred_lightgbm - pred_sklearn) > 1e-3) < .011
if max_leaf_nodes < 10 and n_samples >= 1000:
pred_lightgbm = est_lightgbm.predict(X_test)
pred_sklearn = est_sklearn.predict(X_test)
# less than 1% of the predictions are different up to the 4th decimal
assert np.mean(abs(pred_lightgbm - pred_sklearn) > 1e-4) < .01
@pytest.mark.parametrize('seed', range(5))
@pytest.mark.parametrize('min_samples_leaf', (1, 20))
@pytest.mark.parametrize('n_samples, max_leaf_nodes', [
(255, 4096),
(1000, 8),
])
def test_same_predictions_classification(seed, min_samples_leaf, n_samples,
max_leaf_nodes):
# Same as test_same_predictions_regression but for classification
pytest.importorskip("lightgbm")
rng = np.random.RandomState(seed=seed)
n_samples = n_samples
max_iter = 1
max_bins = 255
X, y = make_classification(n_samples=n_samples, n_classes=2, n_features=5,
n_informative=5, n_redundant=0, random_state=0)
if n_samples > 255:
# bin data and convert it to float32 so that the estimator doesn't
# treat it as pre-binned
X = _BinMapper(n_bins=max_bins + 1).fit_transform(X).astype(np.float32)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)
est_sklearn = HistGradientBoostingClassifier(
loss='binary_crossentropy',
max_iter=max_iter,
max_bins=max_bins,
learning_rate=1,
early_stopping=False,
min_samples_leaf=min_samples_leaf,
max_leaf_nodes=max_leaf_nodes)
est_lightgbm = get_equivalent_estimator(est_sklearn, lib='lightgbm')
est_lightgbm.fit(X_train, y_train)
est_sklearn.fit(X_train, y_train)
# We need X to be treated an numerical data, not pre-binned data.
X_train, X_test = X_train.astype(np.float32), X_test.astype(np.float32)
pred_lightgbm = est_lightgbm.predict(X_train)
pred_sklearn = est_sklearn.predict(X_train)
assert np.mean(pred_sklearn == pred_lightgbm) > .89
acc_lightgbm = accuracy_score(y_train, pred_lightgbm)
acc_sklearn = accuracy_score(y_train, pred_sklearn)
np.testing.assert_almost_equal(acc_lightgbm, acc_sklearn)
if max_leaf_nodes < 10 and n_samples >= 1000:
pred_lightgbm = est_lightgbm.predict(X_test)
pred_sklearn = est_sklearn.predict(X_test)
assert np.mean(pred_sklearn == pred_lightgbm) > .89
acc_lightgbm = accuracy_score(y_test, pred_lightgbm)
acc_sklearn = accuracy_score(y_test, pred_sklearn)
np.testing.assert_almost_equal(acc_lightgbm, acc_sklearn, decimal=2)
@pytest.mark.parametrize('seed', range(5))
@pytest.mark.parametrize('min_samples_leaf', (1, 20))
@pytest.mark.parametrize('n_samples, max_leaf_nodes', [
(255, 4096),
(10000, 8),
])
def test_same_predictions_multiclass_classification(
seed, min_samples_leaf, n_samples, max_leaf_nodes):
# Same as test_same_predictions_regression but for classification
pytest.importorskip("lightgbm")
rng = np.random.RandomState(seed=seed)
n_samples = n_samples
max_iter = 1
max_bins = 255
lr = 1
X, y = make_classification(n_samples=n_samples, n_classes=3, n_features=5,
n_informative=5, n_redundant=0,
n_clusters_per_class=1, random_state=0)
if n_samples > 255:
# bin data and convert it to float32 so that the estimator doesn't
# treat it as pre-binned
X = _BinMapper(n_bins=max_bins + 1).fit_transform(X).astype(np.float32)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)
est_sklearn = HistGradientBoostingClassifier(
loss='categorical_crossentropy',
max_iter=max_iter,
max_bins=max_bins,
learning_rate=lr,
early_stopping=False,
min_samples_leaf=min_samples_leaf,
max_leaf_nodes=max_leaf_nodes)
est_lightgbm = get_equivalent_estimator(est_sklearn, lib='lightgbm')
est_lightgbm.fit(X_train, y_train)
est_sklearn.fit(X_train, y_train)
# We need X to be treated an numerical data, not pre-binned data.
X_train, X_test = X_train.astype(np.float32), X_test.astype(np.float32)
pred_lightgbm = est_lightgbm.predict(X_train)
pred_sklearn = est_sklearn.predict(X_train)
assert np.mean(pred_sklearn == pred_lightgbm) > .89
proba_lightgbm = est_lightgbm.predict_proba(X_train)
proba_sklearn = est_sklearn.predict_proba(X_train)
# assert more than 75% of the predicted probabilities are the same up to
# the second decimal
assert np.mean(np.abs(proba_lightgbm - proba_sklearn) < 1e-2) > .75
acc_lightgbm = accuracy_score(y_train, pred_lightgbm)
acc_sklearn = accuracy_score(y_train, pred_sklearn)
np.testing.assert_almost_equal(acc_lightgbm, acc_sklearn, decimal=2)
if max_leaf_nodes < 10 and n_samples >= 1000:
pred_lightgbm = est_lightgbm.predict(X_test)
pred_sklearn = est_sklearn.predict(X_test)
assert np.mean(pred_sklearn == pred_lightgbm) > .89
proba_lightgbm = est_lightgbm.predict_proba(X_train)
proba_sklearn = est_sklearn.predict_proba(X_train)
# assert more than 75% of the predicted probabilities are the same up
# to the second decimal
assert np.mean(np.abs(proba_lightgbm - proba_sklearn) < 1e-2) > .75
acc_lightgbm = accuracy_score(y_test, pred_lightgbm)
acc_sklearn = accuracy_score(y_test, pred_sklearn)
np.testing.assert_almost_equal(acc_lightgbm, acc_sklearn, decimal=2)
|