File: test_gradient_boosting.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (746 lines) | stat: -rw-r--r-- 29,989 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal
from sklearn.datasets import make_classification, make_regression
from sklearn.datasets import make_low_rank_matrix
from sklearn.preprocessing import KBinsDiscretizer, MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.base import clone, BaseEstimator, TransformerMixin
from sklearn.pipeline import make_pipeline
from sklearn.metrics import mean_poisson_deviance
from sklearn.dummy import DummyRegressor

# To use this experimental feature, we need to explicitly ask for it:
from sklearn.experimental import enable_hist_gradient_boosting  # noqa
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.ensemble._hist_gradient_boosting.loss import _LOSSES
from sklearn.ensemble._hist_gradient_boosting.loss import LeastSquares
from sklearn.ensemble._hist_gradient_boosting.loss import BinaryCrossEntropy
from sklearn.ensemble._hist_gradient_boosting.grower import TreeGrower
from sklearn.ensemble._hist_gradient_boosting.binning import _BinMapper
from sklearn.utils import shuffle


X_classification, y_classification = make_classification(random_state=0)
X_regression, y_regression = make_regression(random_state=0)


def _make_dumb_dataset(n_samples):
    """Make a dumb dataset to test early stopping."""
    rng = np.random.RandomState(42)
    X_dumb = rng.randn(n_samples, 1)
    y_dumb = (X_dumb[:, 0] > 0).astype('int64')
    return X_dumb, y_dumb


@pytest.mark.parametrize('GradientBoosting, X, y', [
    (HistGradientBoostingClassifier, X_classification, y_classification),
    (HistGradientBoostingRegressor, X_regression, y_regression)
])
@pytest.mark.parametrize(
    'params, err_msg',
    [({'loss': 'blah'}, 'Loss blah is not supported for'),
     ({'learning_rate': 0}, 'learning_rate=0 must be strictly positive'),
     ({'learning_rate': -1}, 'learning_rate=-1 must be strictly positive'),
     ({'max_iter': 0}, 'max_iter=0 must not be smaller than 1'),
     ({'max_leaf_nodes': 0}, 'max_leaf_nodes=0 should not be smaller than 2'),
     ({'max_leaf_nodes': 1}, 'max_leaf_nodes=1 should not be smaller than 2'),
     ({'max_depth': 0}, 'max_depth=0 should not be smaller than 1'),
     ({'min_samples_leaf': 0}, 'min_samples_leaf=0 should not be smaller'),
     ({'l2_regularization': -1}, 'l2_regularization=-1 must be positive'),
     ({'max_bins': 1}, 'max_bins=1 should be no smaller than 2 and no larger'),
     ({'max_bins': 256}, 'max_bins=256 should be no smaller than 2 and no'),
     ({'n_iter_no_change': -1}, 'n_iter_no_change=-1 must be positive'),
     ({'validation_fraction': -1}, 'validation_fraction=-1 must be strictly'),
     ({'validation_fraction': 0}, 'validation_fraction=0 must be strictly'),
     ({'tol': -1}, 'tol=-1 must not be smaller than 0')]
)
def test_init_parameters_validation(GradientBoosting, X, y, params, err_msg):

    with pytest.raises(ValueError, match=err_msg):
        GradientBoosting(**params).fit(X, y)


def test_invalid_classification_loss():
    binary_clf = HistGradientBoostingClassifier(loss="binary_crossentropy")
    err_msg = ("loss='binary_crossentropy' is not defined for multiclass "
               "classification with n_classes=3, use "
               "loss='categorical_crossentropy' instead")
    with pytest.raises(ValueError, match=err_msg):
        binary_clf.fit(np.zeros(shape=(3, 2)), np.arange(3))


@pytest.mark.parametrize(
    'scoring, validation_fraction, early_stopping, n_iter_no_change, tol', [
        ('neg_mean_squared_error', .1, True, 5, 1e-7),  # use scorer
        ('neg_mean_squared_error', None, True, 5, 1e-1),  # use scorer on train
        (None, .1, True, 5, 1e-7),  # same with default scorer
        (None, None, True, 5, 1e-1),
        ('loss', .1, True, 5, 1e-7),  # use loss
        ('loss', None, True, 5, 1e-1),  # use loss on training data
        (None, None, False, 5, None),  # no early stopping
        ])
def test_early_stopping_regression(scoring, validation_fraction,
                                   early_stopping, n_iter_no_change, tol):

    max_iter = 200

    X, y = make_regression(n_samples=50, random_state=0)

    gb = HistGradientBoostingRegressor(
        verbose=1,  # just for coverage
        min_samples_leaf=5,  # easier to overfit fast
        scoring=scoring,
        tol=tol,
        early_stopping=early_stopping,
        validation_fraction=validation_fraction,
        max_iter=max_iter,
        n_iter_no_change=n_iter_no_change,
        random_state=0
    )
    gb.fit(X, y)

    if early_stopping:
        assert n_iter_no_change <= gb.n_iter_ < max_iter
    else:
        assert gb.n_iter_ == max_iter


@pytest.mark.parametrize('data', (
    make_classification(n_samples=30, random_state=0),
    make_classification(n_samples=30, n_classes=3, n_clusters_per_class=1,
                        random_state=0)
))
@pytest.mark.parametrize(
    'scoring, validation_fraction, early_stopping, n_iter_no_change, tol', [
        ('accuracy', .1, True, 5, 1e-7),  # use scorer
        ('accuracy', None, True, 5, 1e-1),  # use scorer on training data
        (None, .1, True, 5, 1e-7),  # same with default scorer
        (None, None, True, 5, 1e-1),
        ('loss', .1, True, 5, 1e-7),  # use loss
        ('loss', None, True, 5, 1e-1),  # use loss on training data
        (None, None, False, 5, None),  # no early stopping
        ])
def test_early_stopping_classification(data, scoring, validation_fraction,
                                       early_stopping, n_iter_no_change, tol):

    max_iter = 50

    X, y = data

    gb = HistGradientBoostingClassifier(
        verbose=1,  # just for coverage
        min_samples_leaf=5,  # easier to overfit fast
        scoring=scoring,
        tol=tol,
        early_stopping=early_stopping,
        validation_fraction=validation_fraction,
        max_iter=max_iter,
        n_iter_no_change=n_iter_no_change,
        random_state=0
    )
    gb.fit(X, y)

    if early_stopping is True:
        assert n_iter_no_change <= gb.n_iter_ < max_iter
    else:
        assert gb.n_iter_ == max_iter


@pytest.mark.parametrize('GradientBoosting, X, y', [
    (HistGradientBoostingClassifier, *_make_dumb_dataset(10000)),
    (HistGradientBoostingClassifier, *_make_dumb_dataset(10001)),
    (HistGradientBoostingRegressor, *_make_dumb_dataset(10000)),
    (HistGradientBoostingRegressor, *_make_dumb_dataset(10001))
])
def test_early_stopping_default(GradientBoosting, X, y):
    # Test that early stopping is enabled by default if and only if there
    # are more than 10000 samples
    gb = GradientBoosting(max_iter=10, n_iter_no_change=2, tol=1e-1)
    gb.fit(X, y)
    if X.shape[0] > 10000:
        assert gb.n_iter_ < gb.max_iter
    else:
        assert gb.n_iter_ == gb.max_iter


@pytest.mark.parametrize(
    'scores, n_iter_no_change, tol, stopping',
    [
        ([], 1, 0.001, False),  # not enough iterations
        ([1, 1, 1], 5, 0.001, False),  # not enough iterations
        ([1, 1, 1, 1, 1], 5, 0.001, False),  # not enough iterations
        ([1, 2, 3, 4, 5, 6], 5, 0.001, False),  # significant improvement
        ([1, 2, 3, 4, 5, 6], 5, 0., False),  # significant improvement
        ([1, 2, 3, 4, 5, 6], 5, 0.999, False),  # significant improvement
        ([1, 2, 3, 4, 5, 6], 5, 5 - 1e-5, False),  # significant improvement
        ([1] * 6, 5, 0., True),  # no significant improvement
        ([1] * 6, 5, 0.001, True),  # no significant improvement
        ([1] * 6, 5, 5, True),  # no significant improvement
    ]
)
def test_should_stop(scores, n_iter_no_change, tol, stopping):

    gbdt = HistGradientBoostingClassifier(
        n_iter_no_change=n_iter_no_change, tol=tol
    )
    assert gbdt._should_stop(scores) == stopping


def test_least_absolute_deviation():
    # For coverage only.
    X, y = make_regression(n_samples=500, random_state=0)
    gbdt = HistGradientBoostingRegressor(loss='least_absolute_deviation',
                                         random_state=0)
    gbdt.fit(X, y)
    assert gbdt.score(X, y) > .9


@pytest.mark.parametrize('y', [([1., -2., 0.]), ([0., 0., 0.])])
def test_poisson_y_positive(y):
    # Test that ValueError is raised if either one y_i < 0 or sum(y_i) <= 0.
    err_msg = r"loss='poisson' requires non-negative y and sum\(y\) > 0."
    gbdt = HistGradientBoostingRegressor(loss='poisson', random_state=0)
    with pytest.raises(ValueError, match=err_msg):
        gbdt.fit(np.zeros(shape=(len(y), 1)), y)


def test_poisson():
    # For Poisson distributed target, Poisson loss should give better results
    # than least squares measured in Poisson deviance as metric.
    rng = np.random.RandomState(42)
    n_train, n_test, n_features = 500, 100, 100
    X = make_low_rank_matrix(n_samples=n_train+n_test, n_features=n_features,
                             random_state=rng)
    # We create a log-linear Poisson model and downscale coef as it will get
    # exponentiated.
    coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0)
    y = rng.poisson(lam=np.exp(X @ coef))
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=n_test,
                                                        random_state=rng)
    gbdt_pois = HistGradientBoostingRegressor(loss='poisson', random_state=rng)
    gbdt_ls = HistGradientBoostingRegressor(loss='least_squares',
                                            random_state=rng)
    gbdt_pois.fit(X_train, y_train)
    gbdt_ls.fit(X_train, y_train)
    dummy = DummyRegressor(strategy="mean").fit(X_train, y_train)

    for X, y in [(X_train, y_train), (X_test, y_test)]:
        metric_pois = mean_poisson_deviance(y, gbdt_pois.predict(X))
        # least_squares might produce non-positive predictions => clip
        metric_ls = mean_poisson_deviance(y, np.clip(gbdt_ls.predict(X), 1e-15,
                                                     None))
        metric_dummy = mean_poisson_deviance(y, dummy.predict(X))
        assert metric_pois < metric_ls
        assert metric_pois < metric_dummy


def test_binning_train_validation_are_separated():
    # Make sure training and validation data are binned separately.
    # See issue 13926

    rng = np.random.RandomState(0)
    validation_fraction = .2
    gb = HistGradientBoostingClassifier(
        early_stopping=True,
        validation_fraction=validation_fraction,
        random_state=rng
    )
    gb.fit(X_classification, y_classification)
    mapper_training_data = gb.bin_mapper_

    # Note that since the data is small there is no subsampling and the
    # random_state doesn't matter
    mapper_whole_data = _BinMapper(random_state=0)
    mapper_whole_data.fit(X_classification)

    n_samples = X_classification.shape[0]
    assert np.all(mapper_training_data.n_bins_non_missing_ ==
                  int((1 - validation_fraction) * n_samples))
    assert np.all(mapper_training_data.n_bins_non_missing_ !=
                  mapper_whole_data.n_bins_non_missing_)


def test_missing_values_trivial():
    # sanity check for missing values support. With only one feature and
    # y == isnan(X), the gbdt is supposed to reach perfect accuracy on the
    # training set.

    n_samples = 100
    n_features = 1
    rng = np.random.RandomState(0)

    X = rng.normal(size=(n_samples, n_features))
    mask = rng.binomial(1, .5, size=X.shape).astype(np.bool)
    X[mask] = np.nan
    y = mask.ravel()
    gb = HistGradientBoostingClassifier()
    gb.fit(X, y)

    assert gb.score(X, y) == pytest.approx(1)


@pytest.mark.parametrize('problem', ('classification', 'regression'))
@pytest.mark.parametrize(
    'missing_proportion, expected_min_score_classification, '
    'expected_min_score_regression', [
        (.1, .97, .89),
        (.2, .93, .81),
        (.5, .79, .52)])
def test_missing_values_resilience(problem, missing_proportion,
                                   expected_min_score_classification,
                                   expected_min_score_regression):
    # Make sure the estimators can deal with missing values and still yield
    # decent predictions

    rng = np.random.RandomState(0)
    n_samples = 1000
    n_features = 2
    if problem == 'regression':
        X, y = make_regression(n_samples=n_samples, n_features=n_features,
                               n_informative=n_features, random_state=rng)
        gb = HistGradientBoostingRegressor()
        expected_min_score = expected_min_score_regression
    else:
        X, y = make_classification(n_samples=n_samples, n_features=n_features,
                                   n_informative=n_features, n_redundant=0,
                                   n_repeated=0, random_state=rng)
        gb = HistGradientBoostingClassifier()
        expected_min_score = expected_min_score_classification

    mask = rng.binomial(1, missing_proportion, size=X.shape).astype(np.bool)
    X[mask] = np.nan

    gb.fit(X, y)

    assert gb.score(X, y) > expected_min_score


@pytest.mark.parametrize('data', [
    make_classification(random_state=0, n_classes=2),
    make_classification(random_state=0, n_classes=3, n_informative=3)
], ids=['binary_crossentropy', 'categorical_crossentropy'])
def test_zero_division_hessians(data):
    # non regression test for issue #14018
    # make sure we avoid zero division errors when computing the leaves values.

    # If the learning rate is too high, the raw predictions are bad and will
    # saturate the softmax (or sigmoid in binary classif). This leads to
    # probabilities being exactly 0 or 1, gradients being constant, and
    # hessians being zero.
    X, y = data
    gb = HistGradientBoostingClassifier(learning_rate=100, max_iter=10)
    gb.fit(X, y)


def test_small_trainset():
    # Make sure that the small trainset is stratified and has the expected
    # length (10k samples)
    n_samples = 20000
    original_distrib = {0: 0.1, 1: 0.2, 2: 0.3, 3: 0.4}
    rng = np.random.RandomState(42)
    X = rng.randn(n_samples).reshape(n_samples, 1)
    y = [[class_] * int(prop * n_samples) for (class_, prop)
         in original_distrib.items()]
    y = shuffle(np.concatenate(y))
    gb = HistGradientBoostingClassifier()

    # Compute the small training set
    X_small, y_small, _ = gb._get_small_trainset(X, y, seed=42,
                                                 sample_weight_train=None)

    # Compute the class distribution in the small training set
    unique, counts = np.unique(y_small, return_counts=True)
    small_distrib = {class_: count / 10000 for (class_, count)
                     in zip(unique, counts)}

    # Test that the small training set has the expected length
    assert X_small.shape[0] == 10000
    assert y_small.shape[0] == 10000

    # Test that the class distributions in the whole dataset and in the small
    # training set are identical
    assert small_distrib == pytest.approx(original_distrib)


def test_missing_values_minmax_imputation():
    # Compare the buit-in missing value handling of Histogram GBC with an
    # a-priori missing value imputation strategy that should yield the same
    # results in terms of decision function.
    #
    # Each feature (containing NaNs) is replaced by 2 features:
    # - one where the nans are replaced by min(feature) - 1
    # - one where the nans are replaced by max(feature) + 1
    # A split where nans go to the left has an equivalent split in the
    # first (min) feature, and a split where nans go to the right has an
    # equivalent split in the second (max) feature.
    #
    # Assuming the data is such that there is never a tie to select the best
    # feature to split on during training, the learned decision trees should be
    # strictly equivalent (learn a sequence of splits that encode the same
    # decision function).
    #
    # The MinMaxImputer transformer is meant to be a toy implementation of the
    # "Missing In Attributes" (MIA) missing value handling for decision trees
    # https://www.sciencedirect.com/science/article/abs/pii/S0167865508000305
    # The implementation of MIA as an imputation transformer was suggested by
    # "Remark 3" in https://arxiv.org/abs/1902.06931

    class MinMaxImputer(BaseEstimator, TransformerMixin):

        def fit(self, X, y=None):
            mm = MinMaxScaler().fit(X)
            self.data_min_ = mm.data_min_
            self.data_max_ = mm.data_max_
            return self

        def transform(self, X):
            X_min, X_max = X.copy(), X.copy()

            for feature_idx in range(X.shape[1]):
                nan_mask = np.isnan(X[:, feature_idx])
                X_min[nan_mask, feature_idx] = self.data_min_[feature_idx] - 1
                X_max[nan_mask, feature_idx] = self.data_max_[feature_idx] + 1

            return np.concatenate([X_min, X_max], axis=1)

    def make_missing_value_data(n_samples=int(1e4), seed=0):
        rng = np.random.RandomState(seed)
        X, y = make_regression(n_samples=n_samples, n_features=4,
                               random_state=rng)

        # Pre-bin the data to ensure a deterministic handling by the 2
        # strategies and also make it easier to insert np.nan in a structured
        # way:
        X = KBinsDiscretizer(n_bins=42, encode="ordinal").fit_transform(X)

        # First feature has missing values completely at random:
        rnd_mask = rng.rand(X.shape[0]) > 0.9
        X[rnd_mask, 0] = np.nan

        # Second and third features have missing values for extreme values
        # (censoring missingness):
        low_mask = X[:, 1] == 0
        X[low_mask, 1] = np.nan

        high_mask = X[:, 2] == X[:, 2].max()
        X[high_mask, 2] = np.nan

        # Make the last feature nan pattern very informative:
        y_max = np.percentile(y, 70)
        y_max_mask = y >= y_max
        y[y_max_mask] = y_max
        X[y_max_mask, 3] = np.nan

        # Check that there is at least one missing value in each feature:
        for feature_idx in range(X.shape[1]):
            assert any(np.isnan(X[:, feature_idx]))

        # Let's use a test set to check that the learned decision function is
        # the same as evaluated on unseen data. Otherwise it could just be the
        # case that we find two independent ways to overfit the training set.
        return train_test_split(X, y, random_state=rng)

    # n_samples need to be large enough to minimize the likelihood of having
    # several candidate splits with the same gain value in a given tree.
    X_train, X_test, y_train, y_test = make_missing_value_data(
        n_samples=int(1e4), seed=0)

    # Use a small number of leaf nodes and iterations so as to keep
    # under-fitting models to minimize the likelihood of ties when training the
    # model.
    gbm1 = HistGradientBoostingRegressor(max_iter=100,
                                         max_leaf_nodes=5,
                                         random_state=0)
    gbm1.fit(X_train, y_train)

    gbm2 = make_pipeline(MinMaxImputer(), clone(gbm1))
    gbm2.fit(X_train, y_train)

    # Check that the model reach the same score:
    assert gbm1.score(X_train, y_train) == \
        pytest.approx(gbm2.score(X_train, y_train))

    assert gbm1.score(X_test, y_test) == \
        pytest.approx(gbm2.score(X_test, y_test))

    # Check the individual prediction match as a finer grained
    # decision function check.
    assert_allclose(gbm1.predict(X_train), gbm2.predict(X_train))
    assert_allclose(gbm1.predict(X_test), gbm2.predict(X_test))


def test_infinite_values():
    # Basic test for infinite values

    X = np.array([-np.inf, 0, 1, np.inf]).reshape(-1, 1)
    y = np.array([0, 0, 1, 1])

    gbdt = HistGradientBoostingRegressor(min_samples_leaf=1)
    gbdt.fit(X, y)
    np.testing.assert_allclose(gbdt.predict(X), y, atol=1e-4)


def test_consistent_lengths():
    X = np.array([-np.inf, 0, 1, np.inf]).reshape(-1, 1)
    y = np.array([0, 0, 1, 1])
    sample_weight = np.array([.1, .3, .1])
    gbdt = HistGradientBoostingRegressor()
    with pytest.raises(ValueError,
                       match=r"sample_weight.shape == \(3,\), expected"):
        gbdt.fit(X, y, sample_weight)

    with pytest.raises(ValueError,
                       match="Found input variables with inconsistent number"):
        gbdt.fit(X, y[1:])


def test_infinite_values_missing_values():
    # High level test making sure that inf and nan values are properly handled
    # when both are present. This is similar to
    # test_split_on_nan_with_infinite_values() in test_grower.py, though we
    # cannot check the predictions for binned values here.

    X = np.asarray([-np.inf, 0, 1, np.inf, np.nan]).reshape(-1, 1)
    y_isnan = np.isnan(X.ravel())
    y_isinf = X.ravel() == np.inf

    stump_clf = HistGradientBoostingClassifier(min_samples_leaf=1, max_iter=1,
                                               learning_rate=1, max_depth=2)

    assert stump_clf.fit(X, y_isinf).score(X, y_isinf) == 1
    assert stump_clf.fit(X, y_isnan).score(X, y_isnan) == 1


def test_crossentropy_binary_problem():
    # categorical_crossentropy should only be used if there are more than two
    # classes present. PR #14869
    X = [[1], [0]]
    y = [0, 1]
    gbrt = HistGradientBoostingClassifier(loss='categorical_crossentropy')
    with pytest.raises(ValueError,
                       match="'categorical_crossentropy' is not suitable for"):
        gbrt.fit(X, y)


@pytest.mark.parametrize("scoring", [None, 'loss'])
def test_string_target_early_stopping(scoring):
    # Regression tests for #14709 where the targets need to be encoded before
    # to compute the score
    rng = np.random.RandomState(42)
    X = rng.randn(100, 10)
    y = np.array(['x'] * 50 + ['y'] * 50, dtype=object)
    gbrt = HistGradientBoostingClassifier(n_iter_no_change=10, scoring=scoring)
    gbrt.fit(X, y)


def test_zero_sample_weights_regression():
    # Make sure setting a SW to zero amounts to ignoring the corresponding
    # sample

    X = [[1, 0],
         [1, 0],
         [1, 0],
         [0, 1]]
    y = [0, 0, 1, 0]
    # ignore the first 2 training samples by setting their weight to 0
    sample_weight = [0, 0, 1, 1]
    gb = HistGradientBoostingRegressor(min_samples_leaf=1)
    gb.fit(X, y, sample_weight=sample_weight)
    assert gb.predict([[1, 0]])[0] > 0.5


def test_zero_sample_weights_classification():
    # Make sure setting a SW to zero amounts to ignoring the corresponding
    # sample

    X = [[1, 0],
         [1, 0],
         [1, 0],
         [0, 1]]
    y = [0, 0, 1, 0]
    # ignore the first 2 training samples by setting their weight to 0
    sample_weight = [0, 0, 1, 1]
    gb = HistGradientBoostingClassifier(loss='binary_crossentropy',
                                        min_samples_leaf=1)
    gb.fit(X, y, sample_weight=sample_weight)
    assert_array_equal(gb.predict([[1, 0]]), [1])

    X = [[1, 0],
         [1, 0],
         [1, 0],
         [0, 1],
         [1, 1]]
    y = [0, 0, 1, 0, 2]
    # ignore the first 2 training samples by setting their weight to 0
    sample_weight = [0, 0, 1, 1, 1]
    gb = HistGradientBoostingClassifier(loss='categorical_crossentropy',
                                        min_samples_leaf=1)
    gb.fit(X, y, sample_weight=sample_weight)
    assert_array_equal(gb.predict([[1, 0]]), [1])


@pytest.mark.parametrize('problem', (
    'regression',
    'binary_classification',
    'multiclass_classification'
))
@pytest.mark.parametrize('duplication', ('half', 'all'))
def test_sample_weight_effect(problem, duplication):
    # High level test to make sure that duplicating a sample is equivalent to
    # giving it weight of 2.

    # fails for n_samples > 255 because binning does not take sample weights
    # into account. Keeping n_samples <= 255 makes
    # sure only unique values are used so SW have no effect on binning.
    n_samples = 255
    n_features = 2
    if problem == 'regression':
        X, y = make_regression(n_samples=n_samples, n_features=n_features,
                               n_informative=n_features, random_state=0)
        Klass = HistGradientBoostingRegressor
    else:
        n_classes = 2 if problem == 'binary_classification' else 3
        X, y = make_classification(n_samples=n_samples, n_features=n_features,
                                   n_informative=n_features, n_redundant=0,
                                   n_clusters_per_class=1,
                                   n_classes=n_classes, random_state=0)
        Klass = HistGradientBoostingClassifier

    # This test can't pass if min_samples_leaf > 1 because that would force 2
    # samples to be in the same node in est_sw, while these samples would be
    # free to be separate in est_dup: est_dup would just group together the
    # duplicated samples.
    est = Klass(min_samples_leaf=1)

    # Create dataset with duplicate and corresponding sample weights
    if duplication == 'half':
        lim = n_samples // 2
    else:
        lim = n_samples
    X_dup = np.r_[X, X[:lim]]
    y_dup = np.r_[y, y[:lim]]
    sample_weight = np.ones(shape=(n_samples))
    sample_weight[:lim] = 2

    est_sw = clone(est).fit(X, y, sample_weight=sample_weight)
    est_dup = clone(est).fit(X_dup, y_dup)

    # checking raw_predict is stricter than just predict for classification
    assert np.allclose(est_sw._raw_predict(X_dup),
                       est_dup._raw_predict(X_dup))


@pytest.mark.parametrize('loss_name', ('least_squares',
                                       'least_absolute_deviation'))
def test_sum_hessians_are_sample_weight(loss_name):
    # For losses with constant hessians, the sum_hessians field of the
    # histograms must be equal to the sum of the sample weight of samples at
    # the corresponding bin.

    rng = np.random.RandomState(0)
    n_samples = 1000
    n_features = 2
    X, y = make_regression(n_samples=n_samples, n_features=n_features,
                           random_state=rng)
    bin_mapper = _BinMapper()
    X_binned = bin_mapper.fit_transform(X)

    sample_weight = rng.normal(size=n_samples)

    loss = _LOSSES[loss_name](sample_weight=sample_weight)
    gradients, hessians = loss.init_gradients_and_hessians(
        n_samples=n_samples, prediction_dim=1, sample_weight=sample_weight)
    raw_predictions = rng.normal(size=(1, n_samples))
    loss.update_gradients_and_hessians(gradients, hessians, y,
                                       raw_predictions, sample_weight)

    # build sum_sample_weight which contains the sum of the sample weights at
    # each bin (for each feature). This must be equal to the sum_hessians
    # field of the corresponding histogram
    sum_sw = np.zeros(shape=(n_features, bin_mapper.n_bins))
    for feature_idx in range(n_features):
        for sample_idx in range(n_samples):
            sum_sw[feature_idx, X_binned[sample_idx, feature_idx]] += (
                sample_weight[sample_idx])

    # Build histogram
    grower = TreeGrower(X_binned, gradients[0], hessians[0],
                        n_bins=bin_mapper.n_bins)
    histograms = grower.histogram_builder.compute_histograms_brute(
        grower.root.sample_indices)

    for feature_idx in range(n_features):
        for bin_idx in range(bin_mapper.n_bins):
            assert histograms[feature_idx, bin_idx]['sum_hessians'] == (
                pytest.approx(sum_sw[feature_idx, bin_idx], rel=1e-5))


def test_max_depth_max_leaf_nodes():
    # Non regression test for
    # https://github.com/scikit-learn/scikit-learn/issues/16179
    # there was a bug when the max_depth and the max_leaf_nodes criteria were
    # met at the same time, which would lead to max_leaf_nodes not being
    # respected.
    X, y = make_classification(random_state=0)
    est = HistGradientBoostingClassifier(max_depth=2, max_leaf_nodes=3,
                                         max_iter=1).fit(X, y)
    tree = est._predictors[0][0]
    assert tree.get_max_depth() == 2
    assert tree.get_n_leaf_nodes() == 3  # would be 4 prior to bug fix


def test_early_stopping_on_test_set_with_warm_start():
    # Non regression test for #16661 where second fit fails with
    # warm_start=True, early_stopping is on, and no validation set
    X, y = make_classification(random_state=0)
    gb = HistGradientBoostingClassifier(
        max_iter=1, scoring='loss', warm_start=True, early_stopping=True,
        n_iter_no_change=1, validation_fraction=None)

    gb.fit(X, y)
    # does not raise on second call
    gb.set_params(max_iter=2)
    gb.fit(X, y)


@pytest.mark.parametrize('Est', (HistGradientBoostingClassifier,
                                 HistGradientBoostingRegressor))
def test_single_node_trees(Est):
    # Make sure it's still possible to build single-node trees. In that case
    # the value of the root is set to 0. That's a correct value: if the tree is
    # single-node that's because min_gain_to_split is not respected right from
    # the root, so we don't want the tree to have any impact on the
    # predictions.

    X, y = make_classification(random_state=0)
    y[:] = 1  # constant target will lead to a single root node

    est = Est(max_iter=20)
    est.fit(X, y)

    assert all(len(predictor[0].nodes) == 1 for predictor in est._predictors)
    assert all(predictor[0].nodes[0]['value'] == 0
               for predictor in est._predictors)
    # Still gives correct predictions thanks to the baseline prediction
    assert_allclose(est.predict(X), y)


@pytest.mark.parametrize('Est, loss, X, y', [
    (
        HistGradientBoostingClassifier,
        BinaryCrossEntropy(sample_weight=None),
        X_classification,
        y_classification
    ),
    (
        HistGradientBoostingRegressor,
        LeastSquares(sample_weight=None),
        X_regression,
        y_regression
    )
])
def test_custom_loss(Est, loss, X, y):
    est = Est(loss=loss, max_iter=20)
    est.fit(X, y)