File: _partial_dependence.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (421 lines) | stat: -rw-r--r-- 17,562 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
"""Partial dependence plots for regression and classification models."""

# Authors: Peter Prettenhofer
#          Trevor Stephens
#          Nicolas Hug
# License: BSD 3 clause

from collections.abc import Iterable

import numpy as np
from scipy import sparse
from scipy.stats.mstats import mquantiles

from ..base import is_classifier, is_regressor
from ..pipeline import Pipeline
from ..utils.extmath import cartesian
from ..utils import check_array
from ..utils import check_matplotlib_support  # noqa
from ..utils import _safe_indexing
from ..utils import _determine_key_type
from ..utils import _get_column_indices
from ..utils.validation import check_is_fitted
from ..utils.validation import _deprecate_positional_args
from ..tree import DecisionTreeRegressor
from ..ensemble import RandomForestRegressor
from ..exceptions import NotFittedError
from ..ensemble._gb import BaseGradientBoosting
from sklearn.ensemble._hist_gradient_boosting.gradient_boosting import (
    BaseHistGradientBoosting)


__all__ = [
    'partial_dependence',
]


def _grid_from_X(X, percentiles, grid_resolution):
    """Generate a grid of points based on the percentiles of X.

    The grid is a cartesian product between the columns of ``values``. The
    ith column of ``values`` consists in ``grid_resolution`` equally-spaced
    points between the percentiles of the jth column of X.
    If ``grid_resolution`` is bigger than the number of unique values in the
    jth column of X, then those unique values will be used instead.

    Parameters
    ----------
    X : ndarray, shape (n_samples, n_target_features)
        The data

    percentiles : tuple of floats
        The percentiles which are used to construct the extreme values of
        the grid. Must be in [0, 1].

    grid_resolution : int
        The number of equally spaced points to be placed on the grid for each
        feature.

    Returns
    -------
    grid : ndarray, shape (n_points, n_target_features)
        A value for each feature at each point in the grid. ``n_points`` is
        always ``<= grid_resolution ** X.shape[1]``.

    values : list of 1d ndarrays
        The values with which the grid has been created. The size of each
        array ``values[j]`` is either ``grid_resolution``, or the number of
        unique values in ``X[:, j]``, whichever is smaller.
    """
    if not isinstance(percentiles, Iterable) or len(percentiles) != 2:
        raise ValueError("'percentiles' must be a sequence of 2 elements.")
    if not all(0 <= x <= 1 for x in percentiles):
        raise ValueError("'percentiles' values must be in [0, 1].")
    if percentiles[0] >= percentiles[1]:
        raise ValueError('percentiles[0] must be strictly less '
                         'than percentiles[1].')

    if grid_resolution <= 1:
        raise ValueError("'grid_resolution' must be strictly greater than 1.")

    values = []
    for feature in range(X.shape[1]):
        uniques = np.unique(_safe_indexing(X, feature, axis=1))
        if uniques.shape[0] < grid_resolution:
            # feature has low resolution use unique vals
            axis = uniques
        else:
            # create axis based on percentiles and grid resolution
            emp_percentiles = mquantiles(
                _safe_indexing(X, feature, axis=1), prob=percentiles, axis=0
            )
            if np.allclose(emp_percentiles[0], emp_percentiles[1]):
                raise ValueError(
                    'percentiles are too close to each other, '
                    'unable to build the grid. Please choose percentiles '
                    'that are further apart.')
            axis = np.linspace(emp_percentiles[0],
                               emp_percentiles[1],
                               num=grid_resolution, endpoint=True)
        values.append(axis)

    return cartesian(values), values


def _partial_dependence_recursion(est, grid, features):
    averaged_predictions = est._compute_partial_dependence_recursion(grid,
                                                                     features)
    if averaged_predictions.ndim == 1:
        # reshape to (1, n_points) for consistency with
        # _partial_dependence_brute
        averaged_predictions = averaged_predictions.reshape(1, -1)

    return averaged_predictions


def _partial_dependence_brute(est, grid, features, X, response_method):
    averaged_predictions = []

    # define the prediction_method (predict, predict_proba, decision_function).
    if is_regressor(est):
        prediction_method = est.predict
    else:
        predict_proba = getattr(est, 'predict_proba', None)
        decision_function = getattr(est, 'decision_function', None)
        if response_method == 'auto':
            # try predict_proba, then decision_function if it doesn't exist
            prediction_method = predict_proba or decision_function
        else:
            prediction_method = (predict_proba if response_method ==
                                 'predict_proba' else decision_function)
        if prediction_method is None:
            if response_method == 'auto':
                raise ValueError(
                    'The estimator has no predict_proba and no '
                    'decision_function method.'
                )
            elif response_method == 'predict_proba':
                raise ValueError('The estimator has no predict_proba method.')
            else:
                raise ValueError(
                    'The estimator has no decision_function method.')

    for new_values in grid:
        X_eval = X.copy()
        for i, variable in enumerate(features):
            if hasattr(X_eval, 'iloc'):
                X_eval.iloc[:, variable] = new_values[i]
            else:
                X_eval[:, variable] = new_values[i]

        try:
            predictions = prediction_method(X_eval)
        except NotFittedError:
            raise ValueError(
                "'estimator' parameter must be a fitted estimator")

        # Note: predictions is of shape
        # (n_points,) for non-multioutput regressors
        # (n_points, n_tasks) for multioutput regressors
        # (n_points, 1) for the regressors in cross_decomposition (I think)
        # (n_points, 2) for binary classification
        # (n_points, n_classes) for multiclass classification

        # average over samples
        averaged_predictions.append(np.mean(predictions, axis=0))

    # reshape to (n_targets, n_points) where n_targets is:
    # - 1 for non-multioutput regression and binary classification (shape is
    #   already correct in those cases)
    # - n_tasks for multi-output regression
    # - n_classes for multiclass classification.
    averaged_predictions = np.array(averaged_predictions).T
    if is_regressor(est) and averaged_predictions.ndim == 1:
        # non-multioutput regression, shape is (n_points,)
        averaged_predictions = averaged_predictions.reshape(1, -1)
    elif is_classifier(est) and averaged_predictions.shape[0] == 2:
        # Binary classification, shape is (2, n_points).
        # we output the effect of **positive** class
        averaged_predictions = averaged_predictions[1]
        averaged_predictions = averaged_predictions.reshape(1, -1)

    return averaged_predictions


@_deprecate_positional_args
def partial_dependence(estimator, X, features, *, response_method='auto',
                       percentiles=(0.05, 0.95), grid_resolution=100,
                       method='auto'):
    """Partial dependence of ``features``.

    Partial dependence of a feature (or a set of features) corresponds to
    the average response of an estimator for each possible value of the
    feature.

    Read more in the :ref:`User Guide <partial_dependence>`.

    .. warning::

        For :class:`~sklearn.ensemble.GradientBoostingClassifier` and
        :class:`~sklearn.ensemble.GradientBoostingRegressor`, the
        'recursion' method (used by default) will not account for the `init`
        predictor of the boosting process. In practice, this will produce
        the same values as 'brute' up to a constant offset in the target
        response, provided that `init` is a constant estimator (which is the
        default). However, if `init` is not a constant estimator, the
        partial dependence values are incorrect for 'recursion' because the
        offset will be sample-dependent. It is preferable to use the 'brute'
        method. Note that this only applies to
        :class:`~sklearn.ensemble.GradientBoostingClassifier` and
        :class:`~sklearn.ensemble.GradientBoostingRegressor`, not to
        :class:`~sklearn.ensemble.HistGradientBoostingClassifier` and
        :class:`~sklearn.ensemble.HistGradientBoostingRegressor`.

    Parameters
    ----------
    estimator : BaseEstimator
        A fitted estimator object implementing :term:`predict`,
        :term:`predict_proba`, or :term:`decision_function`.
        Multioutput-multiclass classifiers are not supported.

    X : {array-like or dataframe} of shape (n_samples, n_features)
        ``X`` is used to generate a grid of values for the target
        ``features`` (where the partial dependence will be evaluated), and
        also to generate values for the complement features when the
        `method` is 'brute'.

    features : array-like of {int, str}
        The feature (e.g. `[0]`) or pair of interacting features
        (e.g. `[(0, 1)]`) for which the partial dependency should be computed.

    response_method : 'auto', 'predict_proba' or 'decision_function', \
            optional (default='auto')
        Specifies whether to use :term:`predict_proba` or
        :term:`decision_function` as the target response. For regressors
        this parameter is ignored and the response is always the output of
        :term:`predict`. By default, :term:`predict_proba` is tried first
        and we revert to :term:`decision_function` if it doesn't exist. If
        ``method`` is 'recursion', the response is always the output of
        :term:`decision_function`.

    percentiles : tuple of float, optional (default=(0.05, 0.95))
        The lower and upper percentile used to create the extreme values
        for the grid. Must be in [0, 1].

    grid_resolution : int, optional (default=100)
        The number of equally spaced points on the grid, for each target
        feature.

    method : str, optional (default='auto')
        The method used to calculate the averaged predictions:

        - 'recursion' is only supported for some tree-based estimators (namely
          :class:`~sklearn.ensemble.GradientBoostingClassifier`,
          :class:`~sklearn.ensemble.GradientBoostingRegressor`,
          :class:`~sklearn.ensemble.HistGradientBoostingClassifier`,
          :class:`~sklearn.ensemble.HistGradientBoostingRegressor`,
          :class:`~sklearn.tree.DecisionTreeRegressor`,
          :class:`~sklearn.ensemble.RandomForestRegressor`,
          )
          but is more efficient in terms of speed.
          With this method, the target response of a
          classifier is always the decision function, not the predicted
          probabilities.

        - 'brute' is supported for any estimator, but is more
          computationally intensive.

        - 'auto': the 'recursion' is used for estimators that support it,
          and 'brute' is used otherwise.

        Please see :ref:`this note <pdp_method_differences>` for
        differences between the 'brute' and 'recursion' method.

    Returns
    -------
    averaged_predictions : ndarray, \
            shape (n_outputs, len(values[0]), len(values[1]), ...)
        The predictions for all the points in the grid, averaged over all
        samples in X (or over the training data if ``method`` is
        'recursion'). ``n_outputs`` corresponds to the number of classes in
        a multi-class setting, or to the number of tasks for multi-output
        regression. For classical regression and binary classification
        ``n_outputs==1``. ``n_values_feature_j`` corresponds to the size
        ``values[j]``.

    values : seq of 1d ndarrays
        The values with which the grid has been created. The generated grid
        is a cartesian product of the arrays in ``values``. ``len(values) ==
        len(features)``. The size of each array ``values[j]`` is either
        ``grid_resolution``, or the number of unique values in ``X[:, j]``,
        whichever is smaller.

    Examples
    --------
    >>> X = [[0, 0, 2], [1, 0, 0]]
    >>> y = [0, 1]
    >>> from sklearn.ensemble import GradientBoostingClassifier
    >>> gb = GradientBoostingClassifier(random_state=0).fit(X, y)
    >>> partial_dependence(gb, features=[0], X=X, percentiles=(0, 1),
    ...                    grid_resolution=2) # doctest: +SKIP
    (array([[-4.52...,  4.52...]]), [array([ 0.,  1.])])

    See also
    --------
    sklearn.inspection.plot_partial_dependence: Plot partial dependence
    """
    if not (is_classifier(estimator) or is_regressor(estimator)):
        raise ValueError(
            "'estimator' must be a fitted regressor or classifier."
        )

    if isinstance(estimator, Pipeline):
        # TODO: to be removed if/when pipeline get a `steps_` attributes
        # assuming Pipeline is the only estimator that does not store a new
        # attribute
        for est in estimator:
            # FIXME: remove the None option when it will be deprecated
            if est not in (None, 'drop'):
                check_is_fitted(est)
    else:
        check_is_fitted(estimator)

    if (is_classifier(estimator) and
            isinstance(estimator.classes_[0], np.ndarray)):
        raise ValueError(
            'Multiclass-multioutput estimators are not supported'
        )

    # Use check_array only on lists and other non-array-likes / sparse. Do not
    # convert DataFrame into a NumPy array.
    if not(hasattr(X, '__array__') or sparse.issparse(X)):
        X = check_array(X, force_all_finite='allow-nan', dtype=np.object)

    accepted_responses = ('auto', 'predict_proba', 'decision_function')
    if response_method not in accepted_responses:
        raise ValueError(
            'response_method {} is invalid. Accepted response_method names '
            'are {}.'.format(response_method, ', '.join(accepted_responses)))

    if is_regressor(estimator) and response_method != 'auto':
        raise ValueError(
            "The response_method parameter is ignored for regressors and "
            "must be 'auto'."
        )

    accepted_methods = ('brute', 'recursion', 'auto')
    if method not in accepted_methods:
        raise ValueError(
            'method {} is invalid. Accepted method names are {}.'.format(
                method, ', '.join(accepted_methods)))

    if method == 'auto':
        if (isinstance(estimator, BaseGradientBoosting) and
                estimator.init is None):
            method = 'recursion'
        elif isinstance(estimator, (BaseHistGradientBoosting,
                                    DecisionTreeRegressor,
                                    RandomForestRegressor)):
            method = 'recursion'
        else:
            method = 'brute'

    if method == 'recursion':
        if not isinstance(estimator,
                          (BaseGradientBoosting, BaseHistGradientBoosting,
                           DecisionTreeRegressor, RandomForestRegressor)):
            supported_classes_recursion = (
                'GradientBoostingClassifier',
                'GradientBoostingRegressor',
                'HistGradientBoostingClassifier',
                'HistGradientBoostingRegressor',
                'HistGradientBoostingRegressor',
                'DecisionTreeRegressor',
                'RandomForestRegressor',
            )
            raise ValueError(
                "Only the following estimators support the 'recursion' "
                "method: {}. Try using method='brute'."
                .format(', '.join(supported_classes_recursion)))
        if response_method == 'auto':
            response_method = 'decision_function'

        if response_method != 'decision_function':
            raise ValueError(
                "With the 'recursion' method, the response_method must be "
                "'decision_function'. Got {}.".format(response_method)
            )

    if _determine_key_type(features, accept_slice=False) == 'int':
        # _get_column_indices() supports negative indexing. Here, we limit
        # the indexing to be positive. The upper bound will be checked
        # by _get_column_indices()
        if np.any(np.less(features, 0)):
            raise ValueError(
                'all features must be in [0, {}]'.format(X.shape[1] - 1)
            )

    features_indices = np.asarray(
        _get_column_indices(X, features), dtype=np.int32, order='C'
    ).ravel()

    grid, values = _grid_from_X(
        _safe_indexing(X, features_indices, axis=1), percentiles,
        grid_resolution
    )

    if method == 'brute':
        averaged_predictions = _partial_dependence_brute(
            estimator, grid, features_indices, X, response_method
        )
    else:
        averaged_predictions = _partial_dependence_recursion(
            estimator, grid, features_indices
        )

    # reshape averaged_predictions to
    # (n_outputs, n_values_feature_0, n_values_feature_1, ...)
    averaged_predictions = averaged_predictions.reshape(
        -1, *[val.shape[0] for val in values])

    return averaged_predictions, values