1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
|
import numbers
from itertools import chain
from itertools import count
import warnings
import numpy as np
from scipy import sparse
from scipy.stats.mstats import mquantiles
from joblib import Parallel, delayed
from .. import partial_dependence
from ...base import is_regressor
from ...utils import check_array
from ...utils import check_matplotlib_support # noqa
from ...utils import _safe_indexing
from ...utils.validation import _deprecate_positional_args
@_deprecate_positional_args
def plot_partial_dependence(estimator, X, features, *, feature_names=None,
target=None, response_method='auto', n_cols=3,
grid_resolution=100, percentiles=(0.05, 0.95),
method='auto', n_jobs=None, verbose=0, fig=None,
line_kw=None, contour_kw=None, ax=None):
"""Partial dependence plots.
The ``len(features)`` plots are arranged in a grid with ``n_cols``
columns. Two-way partial dependence plots are plotted as contour plots. The
deciles of the feature values will be shown with tick marks on the x-axes
for one-way plots, and on both axes for two-way plots.
Read more in the :ref:`User Guide <partial_dependence>`.
.. note::
:func:`plot_partial_dependence` does not support using the same axes
with multiple calls. To plot the the partial dependence for multiple
estimators, please pass the axes created by the first call to the
second call::
>>> from sklearn.inspection import plot_partial_dependence
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.linear_model import LinearRegression
>>> X, y = make_friedman1()
>>> est = LinearRegression().fit(X, y)
>>> disp1 = plot_partial_dependence(est, X) # doctest: +SKIP
>>> disp2 = plot_partial_dependence(est, X,
... ax=disp1.axes_) # doctest: +SKIP
.. warning::
For :class:`~sklearn.ensemble.GradientBoostingClassifier` and
:class:`~sklearn.ensemble.GradientBoostingRegressor`, the
'recursion' method (used by default) will not account for the `init`
predictor of the boosting process. In practice, this will produce
the same values as 'brute' up to a constant offset in the target
response, provided that `init` is a constant estimator (which is the
default). However, if `init` is not a constant estimator, the
partial dependence values are incorrect for 'recursion' because the
offset will be sample-dependent. It is preferable to use the 'brute'
method. Note that this only applies to
:class:`~sklearn.ensemble.GradientBoostingClassifier` and
:class:`~sklearn.ensemble.GradientBoostingRegressor`, not to
:class:`~sklearn.ensemble.HistGradientBoostingClassifier` and
:class:`~sklearn.ensemble.HistGradientBoostingRegressor`.
Parameters
----------
estimator : BaseEstimator
A fitted estimator object implementing :term:`predict`,
:term:`predict_proba`, or :term:`decision_function`.
Multioutput-multiclass classifiers are not supported.
X : {array-like or dataframe} of shape (n_samples, n_features)
``X`` is used to generate a grid of values for the target
``features`` (where the partial dependence will be evaluated), and
also to generate values for the complement features when the
`method` is 'brute'.
features : list of {int, str, pair of int, pair of str}
The target features for which to create the PDPs.
If features[i] is an int or a string, a one-way PDP is created; if
features[i] is a tuple, a two-way PDP is created. Each tuple must be
of size 2.
if any entry is a string, then it must be in ``feature_names``.
feature_names : array-like of shape (n_features,), dtype=str, default=None
Name of each feature; feature_names[i] holds the name of the feature
with index i.
By default, the name of the feature corresponds to their numerical
index for NumPy array and their column name for pandas dataframe.
target : int, optional (default=None)
- In a multiclass setting, specifies the class for which the PDPs
should be computed. Note that for binary classification, the
positive class (index 1) is always used.
- In a multioutput setting, specifies the task for which the PDPs
should be computed.
Ignored in binary classification or classical regression settings.
response_method : 'auto', 'predict_proba' or 'decision_function', \
optional (default='auto')
Specifies whether to use :term:`predict_proba` or
:term:`decision_function` as the target response. For regressors
this parameter is ignored and the response is always the output of
:term:`predict`. By default, :term:`predict_proba` is tried first
and we revert to :term:`decision_function` if it doesn't exist. If
``method`` is 'recursion', the response is always the output of
:term:`decision_function`.
n_cols : int, optional (default=3)
The maximum number of columns in the grid plot. Only active when `ax`
is a single axis or `None`.
grid_resolution : int, optional (default=100)
The number of equally spaced points on the axes of the plots, for each
target feature.
percentiles : tuple of float, optional (default=(0.05, 0.95))
The lower and upper percentile used to create the extreme values
for the PDP axes. Must be in [0, 1].
method : str, optional (default='auto')
The method used to calculate the averaged predictions:
- 'recursion' is only supported for some tree-based estimators (namely
:class:`~sklearn.ensemble.GradientBoostingClassifier`,
:class:`~sklearn.ensemble.GradientBoostingRegressor`,
:class:`~sklearn.ensemble.HistGradientBoostingClassifier`,
:class:`~sklearn.ensemble.HistGradientBoostingRegressor`,
:class:`~sklearn.tree.DecisionTreeRegressor`,
:class:`~sklearn.ensemble.RandomForestRegressor`
but is more efficient in terms of speed.
With this method, the target response of a
classifier is always the decision function, not the predicted
probabilities.
- 'brute' is supported for any estimator, but is more
computationally intensive.
- 'auto': the 'recursion' is used for estimators that support it,
and 'brute' is used otherwise.
Please see :ref:`this note <pdp_method_differences>` for
differences between the 'brute' and 'recursion' method.
n_jobs : int, optional (default=None)
The number of CPUs to use to compute the partial dependences.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
verbose : int, optional (default=0)
Verbose output during PD computations.
fig : Matplotlib figure object, optional (default=None)
A figure object onto which the plots will be drawn, after the figure
has been cleared. By default, a new one is created.
.. deprecated:: 0.22
``fig`` will be removed in 0.24.
line_kw : dict, optional
Dict with keywords passed to the ``matplotlib.pyplot.plot`` call.
For one-way partial dependence plots.
contour_kw : dict, optional
Dict with keywords passed to the ``matplotlib.pyplot.contourf`` call.
For two-way partial dependence plots.
ax : Matplotlib axes or array-like of Matplotlib axes, default=None
- If a single axis is passed in, it is treated as a bounding axes
and a grid of partial dependence plots will be drawn within
these bounds. The `n_cols` parameter controls the number of
columns in the grid.
- If an array-like of axes are passed in, the partial dependence
plots will be drawn directly into these axes.
- If `None`, a figure and a bounding axes is created and treated
as the single axes case.
.. versionadded:: 0.22
Returns
-------
display: :class:`~sklearn.inspection.PartialDependenceDisplay`
Examples
--------
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> X, y = make_friedman1()
>>> clf = GradientBoostingRegressor(n_estimators=10).fit(X, y)
>>> plot_partial_dependence(clf, X, [0, (0, 1)]) #doctest: +SKIP
See also
--------
sklearn.inspection.partial_dependence: Return raw partial
dependence values
"""
check_matplotlib_support('plot_partial_dependence') # noqa
import matplotlib.pyplot as plt # noqa
from matplotlib import transforms # noqa
from matplotlib.ticker import MaxNLocator # noqa
from matplotlib.ticker import ScalarFormatter # noqa
# set target_idx for multi-class estimators
if hasattr(estimator, 'classes_') and np.size(estimator.classes_) > 2:
if target is None:
raise ValueError('target must be specified for multi-class')
target_idx = np.searchsorted(estimator.classes_, target)
if (not (0 <= target_idx < len(estimator.classes_)) or
estimator.classes_[target_idx] != target):
raise ValueError('target not in est.classes_, got {}'.format(
target))
else:
# regression and binary classification
target_idx = 0
# Use check_array only on lists and other non-array-likes / sparse. Do not
# convert DataFrame into a NumPy array.
if not(hasattr(X, '__array__') or sparse.issparse(X)):
X = check_array(X, force_all_finite='allow-nan', dtype=np.object)
n_features = X.shape[1]
# convert feature_names to list
if feature_names is None:
if hasattr(X, "loc"):
# get the column names for a pandas dataframe
feature_names = X.columns.tolist()
else:
# define a list of numbered indices for a numpy array
feature_names = [str(i) for i in range(n_features)]
elif hasattr(feature_names, "tolist"):
# convert numpy array or pandas index to a list
feature_names = feature_names.tolist()
if len(set(feature_names)) != len(feature_names):
raise ValueError('feature_names should not contain duplicates.')
def convert_feature(fx):
if isinstance(fx, str):
try:
fx = feature_names.index(fx)
except ValueError:
raise ValueError('Feature %s not in feature_names' % fx)
return int(fx)
# convert features into a seq of int tuples
tmp_features = []
for fxs in features:
if isinstance(fxs, (numbers.Integral, str)):
fxs = (fxs,)
try:
fxs = tuple(convert_feature(fx) for fx in fxs)
except TypeError:
raise ValueError('Each entry in features must be either an int, '
'a string, or an iterable of size at most 2.')
if not 1 <= np.size(fxs) <= 2:
raise ValueError('Each entry in features must be either an int, '
'a string, or an iterable of size at most 2.')
tmp_features.append(fxs)
features = tmp_features
# Early exit if the axes does not have the correct number of axes
if ax is not None and not isinstance(ax, plt.Axes):
axes = np.asarray(ax, dtype=object)
if axes.size != len(features):
raise ValueError("Expected ax to have {} axes, got {}".format(
len(features), axes.size))
for i in chain.from_iterable(features):
if i >= len(feature_names):
raise ValueError('All entries of features must be less than '
'len(feature_names) = {0}, got {1}.'
.format(len(feature_names), i))
# compute averaged predictions
pd_results = Parallel(n_jobs=n_jobs, verbose=verbose)(
delayed(partial_dependence)(estimator, X, fxs,
response_method=response_method,
method=method,
grid_resolution=grid_resolution,
percentiles=percentiles)
for fxs in features)
# For multioutput regression, we can only check the validity of target
# now that we have the predictions.
# Also note: as multiclass-multioutput classifiers are not supported,
# multiclass and multioutput scenario are mutually exclusive. So there is
# no risk of overwriting target_idx here.
avg_preds, _ = pd_results[0] # checking the first result is enough
if is_regressor(estimator) and avg_preds.shape[0] > 1:
if target is None:
raise ValueError(
'target must be specified for multi-output regressors')
if not 0 <= target <= avg_preds.shape[0]:
raise ValueError(
'target must be in [0, n_tasks], got {}.'.format(target))
target_idx = target
# get global min and max average predictions of PD grouped by plot type
pdp_lim = {}
for avg_preds, values in pd_results:
min_pd = avg_preds[target_idx].min()
max_pd = avg_preds[target_idx].max()
n_fx = len(values)
old_min_pd, old_max_pd = pdp_lim.get(n_fx, (min_pd, max_pd))
min_pd = min(min_pd, old_min_pd)
max_pd = max(max_pd, old_max_pd)
pdp_lim[n_fx] = (min_pd, max_pd)
deciles = {}
for fx in chain.from_iterable(features):
if fx not in deciles:
X_col = _safe_indexing(X, fx, axis=1)
deciles[fx] = mquantiles(X_col, prob=np.arange(0.1, 1.0, 0.1))
if fig is not None:
warnings.warn("The fig parameter is deprecated in version "
"0.22 and will be removed in version 0.24",
FutureWarning)
fig.clear()
ax = fig.gca()
display = PartialDependenceDisplay(pd_results=pd_results,
features=features,
feature_names=feature_names,
target_idx=target_idx,
pdp_lim=pdp_lim,
deciles=deciles)
return display.plot(ax=ax, n_cols=n_cols, line_kw=line_kw,
contour_kw=contour_kw)
class PartialDependenceDisplay:
"""Partial Dependence Plot (PDP) visualization.
It is recommended to use
:func:`~sklearn.inspection.plot_partial_dependence` to create a
:class:`~sklearn.inspection.PartialDependenceDisplay`. All parameters are
stored as attributes.
Read more in
:ref:`sphx_glr_auto_examples_miscellaneous_plot_partial_dependence_visualization_api.py`
and the :ref:`User Guide <visualizations>`.
.. versionadded:: 0.22
Parameters
----------
pd_results : list of (ndarray, ndarray)
Results of :func:`~sklearn.inspection.partial_dependence` for
``features``. Each tuple corresponds to a (averaged_predictions, grid).
features : list of (int,) or list of (int, int)
Indices of features for a given plot. A tuple of one integer will plot
a partial dependence curve of one feature. A tuple of two integers will
plot a two-way partial dependence curve as a contour plot.
feature_names : list of str
Feature names corresponding to the indices in ``features``.
target_idx : int
- In a multiclass setting, specifies the class for which the PDPs
should be computed. Note that for binary classification, the
positive class (index 1) is always used.
- In a multioutput setting, specifies the task for which the PDPs
should be computed.
Ignored in binary classification or classical regression settings.
pdp_lim : dict
Global min and max average predictions, such that all plots will have
the same scale and y limits. `pdp_lim[1]` is the global min and max for
single partial dependence curves. `pdp_lim[2]` is the global min and
max for two-way partial dependence curves.
deciles : dict
Deciles for feature indices in ``features``.
Attributes
----------
bounding_ax_ : matplotlib Axes or None
If `ax` is an axes or None, the `bounding_ax_` is the axes where the
grid of partial dependence plots are drawn. If `ax` is a list of axes
or a numpy array of axes, `bounding_ax_` is None.
axes_ : ndarray of matplotlib Axes
If `ax` is an axes or None, `axes_[i, j]` is the axes on the i-th row
and j-th column. If `ax` is a list of axes, `axes_[i]` is the i-th item
in `ax`. Elements that are None correspond to a nonexisting axes in
that position.
lines_ : ndarray of matplotlib Artists
If `ax` is an axes or None, `lines_[i, j]` is the partial dependence
curve on the i-th row and j-th column. If `ax` is a list of axes,
`lines_[i]` is the partial dependence curve corresponding to the i-th
item in `ax`. Elements that are None correspond to a nonexisting axes
or an axes that does not include a line plot.
deciles_vlines_ : ndarray of matplotlib LineCollection
If `ax` is an axes or None, `vlines_[i, j]` is the line collection
representing the x axis deciles of the i-th row and j-th column. If
`ax` is a list of axes, `vlines_[i]` corresponds to the i-th item in
`ax`. Elements that are None correspond to a nonexisting axes or an
axes that does not include a PDP plot.
.. versionadded:: 0.23
deciles_hlines_ : ndarray of matplotlib LineCollection
If `ax` is an axes or None, `vlines_[i, j]` is the line collection
representing the y axis deciles of the i-th row and j-th column. If
`ax` is a list of axes, `vlines_[i]` corresponds to the i-th item in
`ax`. Elements that are None correspond to a nonexisting axes or an
axes that does not include a 2-way plot.
.. versionadded:: 0.23
contours_ : ndarray of matplotlib Artists
If `ax` is an axes or None, `contours_[i, j]` is the partial dependence
plot on the i-th row and j-th column. If `ax` is a list of axes,
`contours_[i]` is the partial dependence plot corresponding to the i-th
item in `ax`. Elements that are None correspond to a nonexisting axes
or an axes that does not include a contour plot.
figure_ : matplotlib Figure
Figure containing partial dependence plots.
"""
@_deprecate_positional_args
def __init__(self, pd_results, *, features, feature_names, target_idx,
pdp_lim, deciles):
self.pd_results = pd_results
self.features = features
self.feature_names = feature_names
self.target_idx = target_idx
self.pdp_lim = pdp_lim
self.deciles = deciles
def plot(self, ax=None, n_cols=3, line_kw=None, contour_kw=None):
"""Plot partial dependence plots.
Parameters
----------
ax : Matplotlib axes or array-like of Matplotlib axes, default=None
- If a single axis is passed in, it is treated as a bounding axes
and a grid of partial dependence plots will be drawn within
these bounds. The `n_cols` parameter controls the number of
columns in the grid.
- If an array-like of axes are passed in, the partial dependence
plots will be drawn directly into these axes.
- If `None`, a figure and a bounding axes is created and treated
as the single axes case.
n_cols : int, default=3
The maximum number of columns in the grid plot. Only active when
`ax` is a single axes or `None`.
line_kw : dict, default=None
Dict with keywords passed to the `matplotlib.pyplot.plot` call.
For one-way partial dependence plots.
contour_kw : dict, default=None
Dict with keywords passed to the `matplotlib.pyplot.contourf`
call for two-way partial dependence plots.
Returns
-------
display: :class:`~sklearn.inspection.PartialDependenceDisplay`
"""
check_matplotlib_support("plot_partial_dependence")
import matplotlib.pyplot as plt # noqa
from matplotlib import transforms # noqa
from matplotlib.ticker import MaxNLocator # noqa
from matplotlib.ticker import ScalarFormatter # noqa
from matplotlib.gridspec import GridSpecFromSubplotSpec # noqa
if line_kw is None:
line_kw = {}
if contour_kw is None:
contour_kw = {}
if ax is None:
_, ax = plt.subplots()
default_contour_kws = {"alpha": 0.75}
contour_kw = {**default_contour_kws, **contour_kw}
n_features = len(self.features)
if isinstance(ax, plt.Axes):
# If ax was set off, it has most likely been set to off
# by a previous call to plot.
if not ax.axison:
raise ValueError("The ax was already used in another plot "
"function, please set ax=display.axes_ "
"instead")
ax.set_axis_off()
self.bounding_ax_ = ax
self.figure_ = ax.figure
n_cols = min(n_cols, n_features)
n_rows = int(np.ceil(n_features / float(n_cols)))
self.axes_ = np.empty((n_rows, n_cols), dtype=np.object)
axes_ravel = self.axes_.ravel()
gs = GridSpecFromSubplotSpec(n_rows, n_cols,
subplot_spec=ax.get_subplotspec())
for i, spec in zip(range(n_features), gs):
axes_ravel[i] = self.figure_.add_subplot(spec)
else: # array-like
ax = np.asarray(ax, dtype=object)
if ax.size != n_features:
raise ValueError("Expected ax to have {} axes, got {}"
.format(n_features, ax.size))
if ax.ndim == 2:
n_cols = ax.shape[1]
else:
n_cols = None
self.bounding_ax_ = None
self.figure_ = ax.ravel()[0].figure
self.axes_ = ax
# create contour levels for two-way plots
if 2 in self.pdp_lim:
Z_level = np.linspace(*self.pdp_lim[2], num=8)
self.lines_ = np.empty_like(self.axes_, dtype=np.object)
self.contours_ = np.empty_like(self.axes_, dtype=np.object)
self.deciles_vlines_ = np.empty_like(self.axes_, dtype=np.object)
self.deciles_hlines_ = np.empty_like(self.axes_, dtype=np.object)
# Create 1d views of these 2d arrays for easy indexing
lines_ravel = self.lines_.ravel(order='C')
contours_ravel = self.contours_.ravel(order='C')
vlines_ravel = self.deciles_vlines_.ravel(order='C')
hlines_ravel = self.deciles_hlines_.ravel(order='C')
for i, axi, fx, (avg_preds, values) in zip(count(),
self.axes_.ravel(),
self.features,
self.pd_results):
if len(values) == 1:
lines_ravel[i] = axi.plot(values[0],
avg_preds[self.target_idx].ravel(),
**line_kw)[0]
else:
# contour plot
XX, YY = np.meshgrid(values[0], values[1])
Z = avg_preds[self.target_idx].T
CS = axi.contour(XX, YY, Z, levels=Z_level, linewidths=0.5,
colors='k')
contours_ravel[i] = axi.contourf(XX, YY, Z, levels=Z_level,
vmax=Z_level[-1],
vmin=Z_level[0],
**contour_kw)
axi.clabel(CS, fmt='%2.2f', colors='k', fontsize=10,
inline=True)
trans = transforms.blended_transform_factory(axi.transData,
axi.transAxes)
ylim = axi.get_ylim()
vlines_ravel[i] = axi.vlines(self.deciles[fx[0]], 0, 0.05,
transform=trans, color='k')
axi.set_ylim(ylim)
# Set xlabel if it is not already set
if not axi.get_xlabel():
axi.set_xlabel(self.feature_names[fx[0]])
if len(values) == 1:
if n_cols is None or i % n_cols == 0:
axi.set_ylabel('Partial dependence')
else:
axi.set_yticklabels([])
axi.set_ylim(self.pdp_lim[1])
else:
# contour plot
trans = transforms.blended_transform_factory(axi.transAxes,
axi.transData)
xlim = axi.get_xlim()
hlines_ravel[i] = axi.hlines(self.deciles[fx[1]], 0, 0.05,
transform=trans, color='k')
# hline erases xlim
axi.set_ylabel(self.feature_names[fx[1]])
axi.set_xlim(xlim)
return self
|