1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
import numpy as np
from scipy.stats.mstats import mquantiles
import pytest
from numpy.testing import assert_allclose
from sklearn.datasets import load_boston
from sklearn.datasets import load_iris
from sklearn.datasets import make_classification, make_regression
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LinearRegression
from sklearn.utils._testing import _convert_container
from sklearn.inspection import plot_partial_dependence
# TODO: Remove when https://github.com/numpy/numpy/issues/14397 is resolved
pytestmark = pytest.mark.filterwarnings(
"ignore:In future, it will be an error for 'np.bool_':DeprecationWarning:"
"matplotlib.*")
@pytest.fixture(scope="module")
def boston():
return load_boston()
@pytest.fixture(scope="module")
def clf_boston(boston):
clf = GradientBoostingRegressor(n_estimators=10, random_state=1)
clf.fit(boston.data, boston.target)
return clf
@pytest.mark.parametrize("grid_resolution", [10, 20])
def test_plot_partial_dependence(grid_resolution, pyplot, clf_boston, boston):
# Test partial dependence plot function.
feature_names = boston.feature_names
disp = plot_partial_dependence(clf_boston, boston.data,
[0, 1, (0, 1)],
grid_resolution=grid_resolution,
feature_names=feature_names,
contour_kw={"cmap": "jet"})
fig = pyplot.gcf()
axs = fig.get_axes()
assert disp.figure_ is fig
assert len(axs) == 4
assert disp.bounding_ax_ is not None
assert disp.axes_.shape == (1, 3)
assert disp.lines_.shape == (1, 3)
assert disp.contours_.shape == (1, 3)
assert disp.deciles_vlines_.shape == (1, 3)
assert disp.deciles_hlines_.shape == (1, 3)
assert disp.lines_[0, 2] is None
assert disp.contours_[0, 0] is None
assert disp.contours_[0, 1] is None
# deciles lines: always show on xaxis, only show on yaxis if 2-way PDP
for i in range(3):
assert disp.deciles_vlines_[0, i] is not None
assert disp.deciles_hlines_[0, 0] is None
assert disp.deciles_hlines_[0, 1] is None
assert disp.deciles_hlines_[0, 2] is not None
assert disp.features == [(0, ), (1, ), (0, 1)]
assert np.all(disp.feature_names == feature_names)
assert len(disp.deciles) == 2
for i in [0, 1]:
assert_allclose(disp.deciles[i],
mquantiles(boston.data[:, i],
prob=np.arange(0.1, 1.0, 0.1)))
single_feature_positions = [(0, 0), (0, 1)]
expected_ylabels = ["Partial dependence", ""]
for i, pos in enumerate(single_feature_positions):
ax = disp.axes_[pos]
assert ax.get_ylabel() == expected_ylabels[i]
assert ax.get_xlabel() == boston.feature_names[i]
assert_allclose(ax.get_ylim(), disp.pdp_lim[1])
line = disp.lines_[pos]
avg_preds, values = disp.pd_results[i]
assert avg_preds.shape == (1, grid_resolution)
target_idx = disp.target_idx
line_data = line.get_data()
assert_allclose(line_data[0], values[0])
assert_allclose(line_data[1], avg_preds[target_idx].ravel())
# two feature position
ax = disp.axes_[0, 2]
coutour = disp.contours_[0, 2]
expected_levels = np.linspace(*disp.pdp_lim[2], num=8)
assert_allclose(coutour.levels, expected_levels)
assert coutour.get_cmap().name == "jet"
assert ax.get_xlabel() == boston.feature_names[0]
assert ax.get_ylabel() == boston.feature_names[1]
@pytest.mark.parametrize(
"input_type, feature_names_type",
[('dataframe', None),
('dataframe', 'list'), ('list', 'list'), ('array', 'list'),
('dataframe', 'array'), ('list', 'array'), ('array', 'array'),
('dataframe', 'series'), ('list', 'series'), ('array', 'series'),
('dataframe', 'index'), ('list', 'index'), ('array', 'index')]
)
def test_plot_partial_dependence_str_features(pyplot, clf_boston, boston,
input_type, feature_names_type):
if input_type == 'dataframe':
pd = pytest.importorskip("pandas")
X = pd.DataFrame(boston.data, columns=boston.feature_names)
elif input_type == 'list':
X = boston.data.tolist()
else:
X = boston.data
if feature_names_type is None:
feature_names = None
else:
feature_names = _convert_container(boston.feature_names,
feature_names_type)
grid_resolution = 25
# check with str features and array feature names and single column
disp = plot_partial_dependence(clf_boston, X,
[('CRIM', 'ZN'), 'ZN'],
grid_resolution=grid_resolution,
feature_names=feature_names,
n_cols=1, line_kw={"alpha": 0.8})
fig = pyplot.gcf()
axs = fig.get_axes()
assert len(axs) == 3
assert disp.figure_ is fig
assert disp.axes_.shape == (2, 1)
assert disp.lines_.shape == (2, 1)
assert disp.contours_.shape == (2, 1)
assert disp.deciles_vlines_.shape == (2, 1)
assert disp.deciles_hlines_.shape == (2, 1)
assert disp.lines_[0, 0] is None
assert disp.deciles_vlines_[0, 0] is not None
assert disp.deciles_hlines_[0, 0] is not None
assert disp.contours_[1, 0] is None
assert disp.deciles_hlines_[1, 0] is None
assert disp.deciles_vlines_[1, 0] is not None
# line
ax = disp.axes_[1, 0]
assert ax.get_xlabel() == "ZN"
assert ax.get_ylabel() == "Partial dependence"
line = disp.lines_[1, 0]
avg_preds, values = disp.pd_results[1]
target_idx = disp.target_idx
assert line.get_alpha() == 0.8
line_data = line.get_data()
assert_allclose(line_data[0], values[0])
assert_allclose(line_data[1], avg_preds[target_idx].ravel())
# contour
ax = disp.axes_[0, 0]
coutour = disp.contours_[0, 0]
expect_levels = np.linspace(*disp.pdp_lim[2], num=8)
assert_allclose(coutour.levels, expect_levels)
assert ax.get_xlabel() == "CRIM"
assert ax.get_ylabel() == "ZN"
def test_plot_partial_dependence_custom_axes(pyplot, clf_boston, boston):
grid_resolution = 25
fig, (ax1, ax2) = pyplot.subplots(1, 2)
feature_names = boston.feature_names.tolist()
disp = plot_partial_dependence(clf_boston, boston.data,
['CRIM', ('CRIM', 'ZN')],
grid_resolution=grid_resolution,
feature_names=feature_names, ax=[ax1, ax2])
assert fig is disp.figure_
assert disp.bounding_ax_ is None
assert disp.axes_.shape == (2, )
assert disp.axes_[0] is ax1
assert disp.axes_[1] is ax2
ax = disp.axes_[0]
assert ax.get_xlabel() == "CRIM"
assert ax.get_ylabel() == "Partial dependence"
line = disp.lines_[0]
avg_preds, values = disp.pd_results[0]
target_idx = disp.target_idx
line_data = line.get_data()
assert_allclose(line_data[0], values[0])
assert_allclose(line_data[1], avg_preds[target_idx].ravel())
# contour
ax = disp.axes_[1]
coutour = disp.contours_[1]
expect_levels = np.linspace(*disp.pdp_lim[2], num=8)
assert_allclose(coutour.levels, expect_levels)
assert ax.get_xlabel() == "CRIM"
assert ax.get_ylabel() == "ZN"
def test_plot_partial_dependence_passing_numpy_axes(pyplot, clf_boston,
boston):
grid_resolution = 25
feature_names = boston.feature_names.tolist()
disp1 = plot_partial_dependence(clf_boston, boston.data,
['CRIM', 'ZN'],
grid_resolution=grid_resolution,
feature_names=feature_names)
assert disp1.axes_.shape == (1, 2)
assert disp1.axes_[0, 0].get_ylabel() == "Partial dependence"
assert disp1.axes_[0, 1].get_ylabel() == ""
assert len(disp1.axes_[0, 0].get_lines()) == 1
assert len(disp1.axes_[0, 1].get_lines()) == 1
lr = LinearRegression()
lr.fit(boston.data, boston.target)
disp2 = plot_partial_dependence(lr, boston.data,
['CRIM', 'ZN'],
grid_resolution=grid_resolution,
feature_names=feature_names,
ax=disp1.axes_)
assert np.all(disp1.axes_ == disp2.axes_)
assert len(disp2.axes_[0, 0].get_lines()) == 2
assert len(disp2.axes_[0, 1].get_lines()) == 2
@pytest.mark.parametrize("nrows, ncols", [(2, 2), (3, 1)])
def test_plot_partial_dependence_incorrent_num_axes(pyplot, clf_boston,
boston, nrows, ncols):
grid_resolution = 5
fig, axes = pyplot.subplots(nrows, ncols)
axes_formats = [list(axes.ravel()), tuple(axes.ravel()), axes]
msg = "Expected ax to have 2 axes, got {}".format(nrows * ncols)
disp = plot_partial_dependence(clf_boston, boston.data,
['CRIM', 'ZN'],
grid_resolution=grid_resolution,
feature_names=boston.feature_names)
for ax_format in axes_formats:
with pytest.raises(ValueError, match=msg):
plot_partial_dependence(clf_boston, boston.data,
['CRIM', 'ZN'],
grid_resolution=grid_resolution,
feature_names=boston.feature_names,
ax=ax_format)
# with axes object
with pytest.raises(ValueError, match=msg):
disp.plot(ax=ax_format)
def test_plot_partial_dependence_with_same_axes(pyplot, clf_boston, boston):
# The first call to plot_partial_dependence will create two new axes to
# place in the space of the passed in axes, which results in a total of
# three axes in the figure.
# Currently the API does not allow for the second call to
# plot_partial_dependence to use the same axes again, because it will
# create two new axes in the space resulting in five axes. To get the
# expected behavior one needs to pass the generated axes into the second
# call:
# disp1 = plot_partial_dependence(...)
# disp2 = plot_partial_dependence(..., ax=disp1.axes_)
grid_resolution = 25
fig, ax = pyplot.subplots()
plot_partial_dependence(clf_boston, boston.data, ['CRIM', 'ZN'],
grid_resolution=grid_resolution,
feature_names=boston.feature_names, ax=ax)
msg = ("The ax was already used in another plot function, please set "
"ax=display.axes_ instead")
with pytest.raises(ValueError, match=msg):
plot_partial_dependence(clf_boston, boston.data,
['CRIM', 'ZN'],
grid_resolution=grid_resolution,
feature_names=boston.feature_names, ax=ax)
def test_plot_partial_dependence_feature_name_reuse(pyplot, clf_boston,
boston):
# second call to plot does not change the feature names from the first
# call
feature_names = boston.feature_names
disp = plot_partial_dependence(clf_boston, boston.data,
[0, 1],
grid_resolution=10,
feature_names=feature_names)
plot_partial_dependence(clf_boston, boston.data, [0, 1],
grid_resolution=10, ax=disp.axes_)
for i, ax in enumerate(disp.axes_.ravel()):
assert ax.get_xlabel() == feature_names[i]
def test_plot_partial_dependence_multiclass(pyplot):
grid_resolution = 25
clf_int = GradientBoostingClassifier(n_estimators=10, random_state=1)
iris = load_iris()
# Test partial dependence plot function on multi-class input.
clf_int.fit(iris.data, iris.target)
disp_target_0 = plot_partial_dependence(clf_int, iris.data, [0, 1],
target=0,
grid_resolution=grid_resolution)
assert disp_target_0.figure_ is pyplot.gcf()
assert disp_target_0.axes_.shape == (1, 2)
assert disp_target_0.lines_.shape == (1, 2)
assert disp_target_0.contours_.shape == (1, 2)
assert disp_target_0.deciles_vlines_.shape == (1, 2)
assert disp_target_0.deciles_hlines_.shape == (1, 2)
assert all(c is None for c in disp_target_0.contours_.flat)
assert disp_target_0.target_idx == 0
# now with symbol labels
target = iris.target_names[iris.target]
clf_symbol = GradientBoostingClassifier(n_estimators=10, random_state=1)
clf_symbol.fit(iris.data, target)
disp_symbol = plot_partial_dependence(clf_symbol, iris.data, [0, 1],
target='setosa',
grid_resolution=grid_resolution)
assert disp_symbol.figure_ is pyplot.gcf()
assert disp_symbol.axes_.shape == (1, 2)
assert disp_symbol.lines_.shape == (1, 2)
assert disp_symbol.contours_.shape == (1, 2)
assert disp_symbol.deciles_vlines_.shape == (1, 2)
assert disp_symbol.deciles_hlines_.shape == (1, 2)
assert all(c is None for c in disp_symbol.contours_.flat)
assert disp_symbol.target_idx == 0
for int_result, symbol_result in zip(disp_target_0.pd_results,
disp_symbol.pd_results):
avg_preds_int, values_int = int_result
avg_preds_symbol, values_symbol = symbol_result
assert_allclose(avg_preds_int, avg_preds_symbol)
assert_allclose(values_int, values_symbol)
# check that the pd plots are different for another target
disp_target_1 = plot_partial_dependence(clf_int, iris.data, [0, 1],
target=1,
grid_resolution=grid_resolution)
target_0_data_y = disp_target_0.lines_[0, 0].get_data()[1]
target_1_data_y = disp_target_1.lines_[0, 0].get_data()[1]
assert any(target_0_data_y != target_1_data_y)
multioutput_regression_data = make_regression(n_samples=50, n_targets=2,
random_state=0)
@pytest.mark.parametrize("target", [0, 1])
def test_plot_partial_dependence_multioutput(pyplot, target):
# Test partial dependence plot function on multi-output input.
X, y = multioutput_regression_data
clf = LinearRegression().fit(X, y)
grid_resolution = 25
disp = plot_partial_dependence(clf, X, [0, 1], target=target,
grid_resolution=grid_resolution)
fig = pyplot.gcf()
axs = fig.get_axes()
assert len(axs) == 3
assert disp.target_idx == target
assert disp.bounding_ax_ is not None
positions = [(0, 0), (0, 1)]
expected_label = ["Partial dependence", ""]
for i, pos in enumerate(positions):
ax = disp.axes_[pos]
assert ax.get_ylabel() == expected_label[i]
assert ax.get_xlabel() == "{}".format(i)
def test_plot_partial_dependence_dataframe(pyplot, clf_boston, boston):
pd = pytest.importorskip('pandas')
df = pd.DataFrame(boston.data, columns=boston.feature_names)
grid_resolution = 25
plot_partial_dependence(
clf_boston, df, ['TAX', 'AGE'], grid_resolution=grid_resolution,
feature_names=df.columns.tolist()
)
dummy_classification_data = make_classification(random_state=0)
@pytest.mark.parametrize(
"data, params, err_msg",
[(multioutput_regression_data, {"target": None, 'features': [0]},
"target must be specified for multi-output"),
(multioutput_regression_data, {"target": -1, 'features': [0]},
r'target must be in \[0, n_tasks\]'),
(multioutput_regression_data, {"target": 100, 'features': [0]},
r'target must be in \[0, n_tasks\]'),
(dummy_classification_data,
{'features': ['foobar'], 'feature_names': None},
'Feature foobar not in feature_names'),
(dummy_classification_data,
{'features': ['foobar'], 'feature_names': ['abcd', 'def']},
'Feature foobar not in feature_names'),
(dummy_classification_data, {'features': [(1, 2, 3)]},
'Each entry in features must be either an int, '),
(dummy_classification_data, {'features': [1, {}]},
'Each entry in features must be either an int, '),
(dummy_classification_data, {'features': [tuple()]},
'Each entry in features must be either an int, '),
(dummy_classification_data,
{'features': [123], 'feature_names': ['blahblah']},
'All entries of features must be less than '),
(dummy_classification_data,
{'features': [0, 1, 2], 'feature_names': ['a', 'b', 'a']},
'feature_names should not contain duplicates')]
)
def test_plot_partial_dependence_error(pyplot, data, params, err_msg):
X, y = data
estimator = LinearRegression().fit(X, y)
with pytest.raises(ValueError, match=err_msg):
plot_partial_dependence(estimator, X, **params)
@pytest.mark.parametrize("params, err_msg", [
({'target': 4, 'features': [0]},
'target not in est.classes_, got 4'),
({'target': None, 'features': [0]},
'target must be specified for multi-class'),
({'target': 1, 'features': [4.5]},
'Each entry in features must be either an int,'),
])
def test_plot_partial_dependence_multiclass_error(pyplot, params, err_msg):
iris = load_iris()
clf = GradientBoostingClassifier(n_estimators=10, random_state=1)
clf.fit(iris.data, iris.target)
with pytest.raises(ValueError, match=err_msg):
plot_partial_dependence(clf, iris.data, **params)
def test_plot_partial_dependence_fig_deprecated(pyplot):
# Make sure fig object is correctly used if not None
X, y = make_regression(n_samples=50, random_state=0)
clf = LinearRegression()
clf.fit(X, y)
fig = pyplot.figure()
grid_resolution = 25
msg = ("The fig parameter is deprecated in version 0.22 and will be "
"removed in version 0.24")
with pytest.warns(FutureWarning, match=msg):
plot_partial_dependence(
clf, X, [0, 1], target=0, grid_resolution=grid_resolution, fig=fig)
assert pyplot.gcf() is fig
|