1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
"""
Generalized Linear Models with Exponential Dispersion Family
"""
# Author: Christian Lorentzen <lorentzen.ch@googlemail.com>
# some parts and tricks stolen from other sklearn files.
# License: BSD 3 clause
import numbers
import numpy as np
import scipy.optimize
from ...base import BaseEstimator, RegressorMixin
from ...utils import check_array, check_X_y
from ...utils.optimize import _check_optimize_result
from ...utils.validation import check_is_fitted, _check_sample_weight
from ..._loss.glm_distribution import (
ExponentialDispersionModel,
TweedieDistribution,
EDM_DISTRIBUTIONS
)
from .link import (
BaseLink,
IdentityLink,
LogLink,
)
def _safe_lin_pred(X, coef):
"""Compute the linear predictor taking care if intercept is present."""
if coef.size == X.shape[1] + 1:
return X @ coef[1:] + coef[0]
else:
return X @ coef
def _y_pred_deviance_derivative(coef, X, y, weights, family, link):
"""Compute y_pred and the derivative of the deviance w.r.t coef."""
lin_pred = _safe_lin_pred(X, coef)
y_pred = link.inverse(lin_pred)
d1 = link.inverse_derivative(lin_pred)
temp = d1 * family.deviance_derivative(y, y_pred, weights)
if coef.size == X.shape[1] + 1:
devp = np.concatenate(([temp.sum()], temp @ X))
else:
devp = temp @ X # same as X.T @ temp
return y_pred, devp
class GeneralizedLinearRegressor(BaseEstimator, RegressorMixin):
"""Regression via a penalized Generalized Linear Model (GLM).
GLMs based on a reproductive Exponential Dispersion Model (EDM) aim at
fitting and predicting the mean of the target y as y_pred=h(X*w).
Therefore, the fit minimizes the following objective function with L2
priors as regularizer::
1/(2*sum(s)) * deviance(y, h(X*w); s)
+ 1/2 * alpha * |w|_2
with inverse link function h and s=sample_weight.
The parameter ``alpha`` corresponds to the lambda parameter in glmnet.
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
Parameters
----------
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
family : {'normal', 'poisson', 'gamma', 'inverse-gaussian'} \
or an ExponentialDispersionModel instance, default='normal'
The distributional assumption of the GLM, i.e. which distribution from
the EDM, specifies the loss function to be minimized.
link : {'auto', 'identity', 'log'} or an instance of class BaseLink, \
default='auto'
The link function of the GLM, i.e. mapping from linear predictor
`X @ coeff + intercept` to prediction `y_pred`. Option 'auto' sets
the link depending on the chosen family as follows:
- 'identity' for Normal distribution
- 'log' for Poisson, Gamma and Inverse Gaussian distributions
solver : 'lbfgs', default='lbfgs'
Algorithm to use in the optimization problem:
'lbfgs'
Calls scipy's L-BFGS-B optimizer.
max_iter : int, default=100
The maximal number of iterations for the solver.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_``.
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
"""
def __init__(self, *, alpha=1.0,
fit_intercept=True, family='normal', link='auto',
solver='lbfgs', max_iter=100, tol=1e-4, warm_start=False,
verbose=0):
self.alpha = alpha
self.fit_intercept = fit_intercept
self.family = family
self.link = link
self.solver = solver
self.max_iter = max_iter
self.tol = tol
self.warm_start = warm_start
self.verbose = verbose
def fit(self, X, y, sample_weight=None):
"""Fit a Generalized Linear Model.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
self : returns an instance of self.
"""
if isinstance(self.family, ExponentialDispersionModel):
self._family_instance = self.family
elif self.family in EDM_DISTRIBUTIONS:
self._family_instance = EDM_DISTRIBUTIONS[self.family]()
else:
raise ValueError(
"The family must be an instance of class"
" ExponentialDispersionModel or an element of"
" ['normal', 'poisson', 'gamma', 'inverse-gaussian']"
"; got (family={0})".format(self.family))
# Guarantee that self._link_instance is set to an instance of
# class BaseLink
if isinstance(self.link, BaseLink):
self._link_instance = self.link
else:
if self.link == 'auto':
if isinstance(self._family_instance, TweedieDistribution):
if self._family_instance.power <= 0:
self._link_instance = IdentityLink()
if self._family_instance.power >= 1:
self._link_instance = LogLink()
else:
raise ValueError("No default link known for the "
"specified distribution family. Please "
"set link manually, i.e. not to 'auto'; "
"got (link='auto', family={})"
.format(self.family))
elif self.link == 'identity':
self._link_instance = IdentityLink()
elif self.link == 'log':
self._link_instance = LogLink()
else:
raise ValueError(
"The link must be an instance of class Link or "
"an element of ['auto', 'identity', 'log']; "
"got (link={0})".format(self.link))
if not isinstance(self.alpha, numbers.Number) or self.alpha < 0:
raise ValueError("Penalty term must be a non-negative number;"
" got (alpha={0})".format(self.alpha))
if not isinstance(self.fit_intercept, bool):
raise ValueError("The argument fit_intercept must be bool;"
" got {0}".format(self.fit_intercept))
if self.solver not in ['lbfgs']:
raise ValueError("GeneralizedLinearRegressor supports only solvers"
"'lbfgs'; got {0}".format(self.solver))
solver = self.solver
if (not isinstance(self.max_iter, numbers.Integral)
or self.max_iter <= 0):
raise ValueError("Maximum number of iteration must be a positive "
"integer;"
" got (max_iter={0!r})".format(self.max_iter))
if not isinstance(self.tol, numbers.Number) or self.tol <= 0:
raise ValueError("Tolerance for stopping criteria must be "
"positive; got (tol={0!r})".format(self.tol))
if not isinstance(self.warm_start, bool):
raise ValueError("The argument warm_start must be bool;"
" got {0}".format(self.warm_start))
family = self._family_instance
link = self._link_instance
X, y = check_X_y(X, y, accept_sparse=['csc', 'csr'],
dtype=[np.float64, np.float32],
y_numeric=True, multi_output=False)
weights = _check_sample_weight(sample_weight, X)
_, n_features = X.shape
if not np.all(family.in_y_range(y)):
raise ValueError("Some value(s) of y are out of the valid "
"range for family {0}"
.format(family.__class__.__name__))
# TODO: if alpha=0 check that X is not rank deficient
# rescaling of sample_weight
#
# IMPORTANT NOTE: Since we want to minimize
# 1/(2*sum(sample_weight)) * deviance + L2,
# deviance = sum(sample_weight * unit_deviance),
# we rescale weights such that sum(weights) = 1 and this becomes
# 1/2*deviance + L2 with deviance=sum(weights * unit_deviance)
weights = weights / weights.sum()
if self.warm_start and hasattr(self, 'coef_'):
if self.fit_intercept:
coef = np.concatenate((np.array([self.intercept_]),
self.coef_))
else:
coef = self.coef_
else:
if self.fit_intercept:
coef = np.zeros(n_features+1)
coef[0] = link(np.average(y, weights=weights))
else:
coef = np.zeros(n_features)
# algorithms for optimization
if solver == 'lbfgs':
def func(coef, X, y, weights, alpha, family, link):
y_pred, devp = _y_pred_deviance_derivative(
coef, X, y, weights, family, link
)
dev = family.deviance(y, y_pred, weights)
# offset if coef[0] is intercept
offset = 1 if self.fit_intercept else 0
coef_scaled = alpha * coef[offset:]
obj = 0.5 * dev + 0.5 * (coef[offset:] @ coef_scaled)
objp = 0.5 * devp
objp[offset:] += coef_scaled
return obj, objp
args = (X, y, weights, self.alpha, family, link)
opt_res = scipy.optimize.minimize(
func, coef, method="L-BFGS-B", jac=True,
options={
"maxiter": self.max_iter,
"iprint": (self.verbose > 0) - 1,
"gtol": self.tol,
"ftol": 1e3*np.finfo(float).eps,
},
args=args)
self.n_iter_ = _check_optimize_result("lbfgs", opt_res)
coef = opt_res.x
if self.fit_intercept:
self.intercept_ = coef[0]
self.coef_ = coef[1:]
else:
# set intercept to zero as the other linear models do
self.intercept_ = 0.
self.coef_ = coef
return self
def _linear_predictor(self, X):
"""Compute the linear_predictor = `X @ coef_ + intercept_`.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
Returns
-------
y_pred : array of shape (n_samples,)
Returns predicted values of linear predictor.
"""
check_is_fitted(self)
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'],
dtype=[np.float64, np.float32], ensure_2d=True,
allow_nd=False)
return X @ self.coef_ + self.intercept_
def predict(self, X):
"""Predict using GLM with feature matrix X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
Returns
-------
y_pred : array of shape (n_samples,)
Returns predicted values.
"""
# check_array is done in _linear_predictor
eta = self._linear_predictor(X)
y_pred = self._link_instance.inverse(eta)
return y_pred
def score(self, X, y, sample_weight=None):
"""Compute D^2, the percentage of deviance explained.
D^2 is a generalization of the coefficient of determination R^2.
R^2 uses squared error and D^2 deviance. Note that those two are equal
for ``family='normal'``.
D^2 is defined as
:math:`D^2 = 1-\\frac{D(y_{true},y_{pred})}{D_{null}}`,
:math:`D_{null}` is the null deviance, i.e. the deviance of a model
with intercept alone, which corresponds to :math:`y_{pred} = \\bar{y}`.
The mean :math:`\\bar{y}` is averaged by sample_weight.
Best possible score is 1.0 and it can be negative (because the model
can be arbitrarily worse).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples,)
True values of target.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
D^2 of self.predict(X) w.r.t. y.
"""
# Note, default score defined in RegressorMixin is R^2 score.
# TODO: make D^2 a score function in module metrics (and thereby get
# input validation and so on)
weights = _check_sample_weight(sample_weight, X)
y_pred = self.predict(X)
dev = self._family_instance.deviance(y, y_pred, weights=weights)
y_mean = np.average(y, weights=weights)
dev_null = self._family_instance.deviance(y, y_mean, weights=weights)
return 1 - dev / dev_null
def _more_tags(self):
# create the _family_instance if fit wasn't called yet.
if hasattr(self, '_family_instance'):
_family_instance = self._family_instance
elif isinstance(self.family, ExponentialDispersionModel):
_family_instance = self.family
elif self.family in EDM_DISTRIBUTIONS:
_family_instance = EDM_DISTRIBUTIONS[self.family]()
else:
raise ValueError
return {"requires_positive_y": not _family_instance.in_y_range(-1.0)}
class PoissonRegressor(GeneralizedLinearRegressor):
"""Generalized Linear Model with a Poisson distribution.
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
Parameters
----------
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
max_iter : int, default=100
The maximal number of iterations for the solver.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_`` .
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
"""
def __init__(self, *, alpha=1.0, fit_intercept=True, max_iter=100,
tol=1e-4, warm_start=False, verbose=0):
super().__init__(alpha=alpha, fit_intercept=fit_intercept,
family="poisson", link='log', max_iter=max_iter,
tol=tol, warm_start=warm_start, verbose=verbose)
@property
def family(self):
# Make this attribute read-only to avoid mis-uses e.g. in GridSearch.
return "poisson"
@family.setter
def family(self, value):
if value != "poisson":
raise ValueError("PoissonRegressor.family must be 'poisson'!")
class GammaRegressor(GeneralizedLinearRegressor):
"""Generalized Linear Model with a Gamma distribution.
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
Parameters
----------
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
max_iter : int, default=100
The maximal number of iterations for the solver.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_`` .
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X * coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
"""
def __init__(self, *, alpha=1.0, fit_intercept=True, max_iter=100,
tol=1e-4, warm_start=False, verbose=0):
super().__init__(alpha=alpha, fit_intercept=fit_intercept,
family="gamma", link='log', max_iter=max_iter,
tol=tol, warm_start=warm_start, verbose=verbose)
@property
def family(self):
# Make this attribute read-only to avoid mis-uses e.g. in GridSearch.
return "gamma"
@family.setter
def family(self, value):
if value != "gamma":
raise ValueError("GammaRegressor.family must be 'gamma'!")
class TweedieRegressor(GeneralizedLinearRegressor):
"""Generalized Linear Model with a Tweedie distribution.
This estimator can be used to model different GLMs depending on the
``power`` parameter, which determines the underlying distribution.
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
Parameters
----------
power : float, default=0
The power determines the underlying target distribution according
to the following table:
+-------+------------------------+
| Power | Distribution |
+=======+========================+
| 0 | Normal |
+-------+------------------------+
| 1 | Poisson |
+-------+------------------------+
| (1,2) | Compound Poisson Gamma |
+-------+------------------------+
| 2 | Gamma |
+-------+------------------------+
| 3 | Inverse Gaussian |
+-------+------------------------+
For ``0 < power < 1``, no distribution exists.
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
link : {'auto', 'identity', 'log'}, default='auto'
The link function of the GLM, i.e. mapping from linear predictor
`X @ coeff + intercept` to prediction `y_pred`. Option 'auto' sets
the link depending on the chosen family as follows:
- 'identity' for Normal distribution
- 'log' for Poisson, Gamma and Inverse Gaussian distributions
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
max_iter : int, default=100
The maximal number of iterations for the solver.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_`` .
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
"""
def __init__(self, *, power=0.0, alpha=1.0, fit_intercept=True,
link='auto', max_iter=100, tol=1e-4,
warm_start=False, verbose=0):
super().__init__(alpha=alpha, fit_intercept=fit_intercept,
family=TweedieDistribution(power=power), link=link,
max_iter=max_iter, tol=tol,
warm_start=warm_start, verbose=verbose)
@property
def family(self):
# We use a property with a setter to make sure that the family is
# always a Tweedie distribution, and that self.power and
# self.family.power are identical by construction.
dist = TweedieDistribution(power=self.power)
# TODO: make the returned object immutable
return dist
@family.setter
def family(self, value):
if isinstance(value, TweedieDistribution):
self.power = value.power
else:
raise TypeError("TweedieRegressor.family must be of type "
"TweedieDistribution!")
|