File: test_base.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (530 lines) | stat: -rw-r--r-- 19,300 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
# License: BSD 3 clause

import pytest

import numpy as np
from scipy import sparse
from scipy import linalg

from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils.fixes import parse_version

from sklearn.linear_model import LinearRegression
from sklearn.linear_model._base import _preprocess_data
from sklearn.linear_model._base import _rescale_data
from sklearn.linear_model._base import make_dataset
from sklearn.utils import check_random_state
from sklearn.datasets import make_sparse_uncorrelated
from sklearn.datasets import make_regression
from sklearn.datasets import load_iris

rng = np.random.RandomState(0)
rtol = 1e-6


def test_linear_regression():
    # Test LinearRegression on a simple dataset.
    # a simple dataset
    X = [[1], [2]]
    Y = [1, 2]

    reg = LinearRegression()
    reg.fit(X, Y)

    assert_array_almost_equal(reg.coef_, [1])
    assert_array_almost_equal(reg.intercept_, [0])
    assert_array_almost_equal(reg.predict(X), [1, 2])

    # test it also for degenerate input
    X = [[1]]
    Y = [0]

    reg = LinearRegression()
    reg.fit(X, Y)
    assert_array_almost_equal(reg.coef_, [0])
    assert_array_almost_equal(reg.intercept_, [0])
    assert_array_almost_equal(reg.predict(X), [0])


def test_linear_regression_sample_weights():
    # TODO: loop over sparse data as well

    rng = np.random.RandomState(0)

    # It would not work with under-determined systems
    for n_samples, n_features in ((6, 5), ):

        y = rng.randn(n_samples)
        X = rng.randn(n_samples, n_features)
        sample_weight = 1.0 + rng.rand(n_samples)

        for intercept in (True, False):

            # LinearRegression with explicit sample_weight
            reg = LinearRegression(fit_intercept=intercept)
            reg.fit(X, y, sample_weight=sample_weight)
            coefs1 = reg.coef_
            inter1 = reg.intercept_

            assert reg.coef_.shape == (X.shape[1], )  # sanity checks
            assert reg.score(X, y) > 0.5

            # Closed form of the weighted least square
            # theta = (X^T W X)^(-1) * X^T W y
            W = np.diag(sample_weight)
            if intercept is False:
                X_aug = X
            else:
                dummy_column = np.ones(shape=(n_samples, 1))
                X_aug = np.concatenate((dummy_column, X), axis=1)

            coefs2 = linalg.solve(X_aug.T.dot(W).dot(X_aug),
                                  X_aug.T.dot(W).dot(y))

            if intercept is False:
                assert_array_almost_equal(coefs1, coefs2)
            else:
                assert_array_almost_equal(coefs1, coefs2[1:])
                assert_almost_equal(inter1, coefs2[0])


def test_raises_value_error_if_sample_weights_greater_than_1d():
    # Sample weights must be either scalar or 1D

    n_sampless = [2, 3]
    n_featuress = [3, 2]

    for n_samples, n_features in zip(n_sampless, n_featuress):
        X = rng.randn(n_samples, n_features)
        y = rng.randn(n_samples)
        sample_weights_OK = rng.randn(n_samples) ** 2 + 1
        sample_weights_OK_1 = 1.
        sample_weights_OK_2 = 2.

        reg = LinearRegression()

        # make sure the "OK" sample weights actually work
        reg.fit(X, y, sample_weights_OK)
        reg.fit(X, y, sample_weights_OK_1)
        reg.fit(X, y, sample_weights_OK_2)


def test_fit_intercept():
    # Test assertions on betas shape.
    X2 = np.array([[0.38349978, 0.61650022],
                   [0.58853682, 0.41146318]])
    X3 = np.array([[0.27677969, 0.70693172, 0.01628859],
                   [0.08385139, 0.20692515, 0.70922346]])
    y = np.array([1, 1])

    lr2_without_intercept = LinearRegression(fit_intercept=False).fit(X2, y)
    lr2_with_intercept = LinearRegression().fit(X2, y)

    lr3_without_intercept = LinearRegression(fit_intercept=False).fit(X3, y)
    lr3_with_intercept = LinearRegression().fit(X3, y)

    assert (lr2_with_intercept.coef_.shape ==
            lr2_without_intercept.coef_.shape)
    assert (lr3_with_intercept.coef_.shape ==
            lr3_without_intercept.coef_.shape)
    assert (lr2_without_intercept.coef_.ndim ==
            lr3_without_intercept.coef_.ndim)


def test_linear_regression_sparse(random_state=0):
    # Test that linear regression also works with sparse data
    random_state = check_random_state(random_state)
    for i in range(10):
        n = 100
        X = sparse.eye(n, n)
        beta = random_state.rand(n)
        y = X * beta[:, np.newaxis]

        ols = LinearRegression()
        ols.fit(X, y.ravel())
        assert_array_almost_equal(beta, ols.coef_ + ols.intercept_)

        assert_array_almost_equal(ols.predict(X) - y.ravel(), 0)


@pytest.mark.parametrize('normalize', [True, False])
@pytest.mark.parametrize('fit_intercept', [True, False])
def test_linear_regression_sparse_equal_dense(normalize, fit_intercept):
    # Test that linear regression agrees between sparse and dense
    rng = check_random_state(0)
    n_samples = 200
    n_features = 2
    X = rng.randn(n_samples, n_features)
    X[X < 0.1] = 0.
    Xcsr = sparse.csr_matrix(X)
    y = rng.rand(n_samples)
    params = dict(normalize=normalize, fit_intercept=fit_intercept)
    clf_dense = LinearRegression(**params)
    clf_sparse = LinearRegression(**params)
    clf_dense.fit(X, y)
    clf_sparse.fit(Xcsr, y)
    assert clf_dense.intercept_ == pytest.approx(clf_sparse.intercept_)
    assert_allclose(clf_dense.coef_, clf_sparse.coef_)


def test_linear_regression_multiple_outcome(random_state=0):
    # Test multiple-outcome linear regressions
    X, y = make_regression(random_state=random_state)

    Y = np.vstack((y, y)).T
    n_features = X.shape[1]

    reg = LinearRegression()
    reg.fit((X), Y)
    assert reg.coef_.shape == (2, n_features)
    Y_pred = reg.predict(X)
    reg.fit(X, y)
    y_pred = reg.predict(X)
    assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)


def test_linear_regression_sparse_multiple_outcome(random_state=0):
    # Test multiple-outcome linear regressions with sparse data
    random_state = check_random_state(random_state)
    X, y = make_sparse_uncorrelated(random_state=random_state)
    X = sparse.coo_matrix(X)
    Y = np.vstack((y, y)).T
    n_features = X.shape[1]

    ols = LinearRegression()
    ols.fit(X, Y)
    assert ols.coef_.shape == (2, n_features)
    Y_pred = ols.predict(X)
    ols.fit(X, y.ravel())
    y_pred = ols.predict(X)
    assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)


def test_linear_regression_pd_sparse_dataframe_warning():
    pd = pytest.importorskip('pandas')
    # restrict the pd versions < '0.24.0' as they have a bug in is_sparse func
    if parse_version(pd.__version__) < parse_version('0.24.0'):
        pytest.skip("pandas 0.24+ required.")

    # Warning is raised only when some of the columns is sparse
    df = pd.DataFrame({'0': np.random.randn(10)})
    for col in range(1, 4):
        arr = np.random.randn(10)
        arr[:8] = 0
        # all columns but the first column is sparse
        if col != 0:
            arr = pd.arrays.SparseArray(arr, fill_value=0)
        df[str(col)] = arr

    msg = "pandas.DataFrame with sparse columns found."
    with pytest.warns(UserWarning, match=msg):
        reg = LinearRegression()
        reg.fit(df.iloc[:, 0:2], df.iloc[:, 3])

    # does not warn when the whole dataframe is sparse
    df['0'] = pd.arrays.SparseArray(df['0'], fill_value=0)
    assert hasattr(df, "sparse")

    with pytest.warns(None) as record:
        reg.fit(df.iloc[:, 0:2], df.iloc[:, 3])
    assert not record


def test_preprocess_data():
    n_samples = 200
    n_features = 2
    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples)
    expected_X_mean = np.mean(X, axis=0)
    expected_X_norm = np.std(X, axis=0) * np.sqrt(X.shape[0])
    expected_y_mean = np.mean(y, axis=0)

    Xt, yt, X_mean, y_mean, X_norm = \
        _preprocess_data(X, y, fit_intercept=False, normalize=False)
    assert_array_almost_equal(X_mean, np.zeros(n_features))
    assert_array_almost_equal(y_mean, 0)
    assert_array_almost_equal(X_norm, np.ones(n_features))
    assert_array_almost_equal(Xt, X)
    assert_array_almost_equal(yt, y)

    Xt, yt, X_mean, y_mean, X_norm = \
        _preprocess_data(X, y, fit_intercept=True, normalize=False)
    assert_array_almost_equal(X_mean, expected_X_mean)
    assert_array_almost_equal(y_mean, expected_y_mean)
    assert_array_almost_equal(X_norm, np.ones(n_features))
    assert_array_almost_equal(Xt, X - expected_X_mean)
    assert_array_almost_equal(yt, y - expected_y_mean)

    Xt, yt, X_mean, y_mean, X_norm = \
        _preprocess_data(X, y, fit_intercept=True, normalize=True)
    assert_array_almost_equal(X_mean, expected_X_mean)
    assert_array_almost_equal(y_mean, expected_y_mean)
    assert_array_almost_equal(X_norm, expected_X_norm)
    assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_norm)
    assert_array_almost_equal(yt, y - expected_y_mean)


def test_preprocess_data_multioutput():
    n_samples = 200
    n_features = 3
    n_outputs = 2
    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples, n_outputs)
    expected_y_mean = np.mean(y, axis=0)

    args = [X, sparse.csc_matrix(X)]
    for X in args:
        _, yt, _, y_mean, _ = _preprocess_data(X, y, fit_intercept=False,
                                               normalize=False)
        assert_array_almost_equal(y_mean, np.zeros(n_outputs))
        assert_array_almost_equal(yt, y)

        _, yt, _, y_mean, _ = _preprocess_data(X, y, fit_intercept=True,
                                               normalize=False)
        assert_array_almost_equal(y_mean, expected_y_mean)
        assert_array_almost_equal(yt, y - y_mean)

        _, yt, _, y_mean, _ = _preprocess_data(X, y, fit_intercept=True,
                                               normalize=True)
        assert_array_almost_equal(y_mean, expected_y_mean)
        assert_array_almost_equal(yt, y - y_mean)


def test_preprocess_data_weighted():
    n_samples = 200
    n_features = 2
    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples)
    sample_weight = rng.rand(n_samples)
    expected_X_mean = np.average(X, axis=0, weights=sample_weight)
    expected_y_mean = np.average(y, axis=0, weights=sample_weight)

    # XXX: if normalize=True, should we expect a weighted standard deviation?
    #      Currently not weighted, but calculated with respect to weighted mean
    expected_X_norm = (np.sqrt(X.shape[0]) *
                       np.mean((X - expected_X_mean) ** 2, axis=0) ** .5)

    Xt, yt, X_mean, y_mean, X_norm = \
        _preprocess_data(X, y, fit_intercept=True, normalize=False,
                         sample_weight=sample_weight)
    assert_array_almost_equal(X_mean, expected_X_mean)
    assert_array_almost_equal(y_mean, expected_y_mean)
    assert_array_almost_equal(X_norm, np.ones(n_features))
    assert_array_almost_equal(Xt, X - expected_X_mean)
    assert_array_almost_equal(yt, y - expected_y_mean)

    Xt, yt, X_mean, y_mean, X_norm = \
        _preprocess_data(X, y, fit_intercept=True, normalize=True,
                         sample_weight=sample_weight)
    assert_array_almost_equal(X_mean, expected_X_mean)
    assert_array_almost_equal(y_mean, expected_y_mean)
    assert_array_almost_equal(X_norm, expected_X_norm)
    assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_norm)
    assert_array_almost_equal(yt, y - expected_y_mean)


def test_sparse_preprocess_data_with_return_mean():
    n_samples = 200
    n_features = 2
    # random_state not supported yet in sparse.rand
    X = sparse.rand(n_samples, n_features, density=.5)  # , random_state=rng
    X = X.tolil()
    y = rng.rand(n_samples)
    XA = X.toarray()
    expected_X_norm = np.std(XA, axis=0) * np.sqrt(X.shape[0])

    Xt, yt, X_mean, y_mean, X_norm = \
        _preprocess_data(X, y, fit_intercept=False, normalize=False,
                         return_mean=True)
    assert_array_almost_equal(X_mean, np.zeros(n_features))
    assert_array_almost_equal(y_mean, 0)
    assert_array_almost_equal(X_norm, np.ones(n_features))
    assert_array_almost_equal(Xt.A, XA)
    assert_array_almost_equal(yt, y)

    Xt, yt, X_mean, y_mean, X_norm = \
        _preprocess_data(X, y, fit_intercept=True, normalize=False,
                         return_mean=True)
    assert_array_almost_equal(X_mean, np.mean(XA, axis=0))
    assert_array_almost_equal(y_mean, np.mean(y, axis=0))
    assert_array_almost_equal(X_norm, np.ones(n_features))
    assert_array_almost_equal(Xt.A, XA)
    assert_array_almost_equal(yt, y - np.mean(y, axis=0))

    Xt, yt, X_mean, y_mean, X_norm = \
        _preprocess_data(X, y, fit_intercept=True, normalize=True,
                         return_mean=True)
    assert_array_almost_equal(X_mean, np.mean(XA, axis=0))
    assert_array_almost_equal(y_mean, np.mean(y, axis=0))
    assert_array_almost_equal(X_norm, expected_X_norm)
    assert_array_almost_equal(Xt.A, XA / expected_X_norm)
    assert_array_almost_equal(yt, y - np.mean(y, axis=0))


def test_csr_preprocess_data():
    # Test output format of _preprocess_data, when input is csr
    X, y = make_regression()
    X[X < 2.5] = 0.0
    csr = sparse.csr_matrix(X)
    csr_, y, _, _, _ = _preprocess_data(csr, y, True)
    assert csr_.getformat() == 'csr'


@pytest.mark.parametrize('is_sparse', (True, False))
@pytest.mark.parametrize('to_copy', (True, False))
def test_preprocess_copy_data_no_checks(is_sparse, to_copy):
    X, y = make_regression()
    X[X < 2.5] = 0.0

    if is_sparse:
        X = sparse.csr_matrix(X)

    X_, y_, _, _, _ = _preprocess_data(X, y, True,
                                       copy=to_copy, check_input=False)

    if to_copy and is_sparse:
        assert not np.may_share_memory(X_.data, X.data)
    elif to_copy:
        assert not np.may_share_memory(X_, X)
    elif is_sparse:
        assert np.may_share_memory(X_.data, X.data)
    else:
        assert np.may_share_memory(X_, X)


def test_dtype_preprocess_data():
    n_samples = 200
    n_features = 2
    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples)

    X_32 = np.asarray(X, dtype=np.float32)
    y_32 = np.asarray(y, dtype=np.float32)
    X_64 = np.asarray(X, dtype=np.float64)
    y_64 = np.asarray(y, dtype=np.float64)

    for fit_intercept in [True, False]:
        for normalize in [True, False]:

            Xt_32, yt_32, X_mean_32, y_mean_32, X_norm_32 = _preprocess_data(
                X_32, y_32, fit_intercept=fit_intercept, normalize=normalize,
                return_mean=True)

            Xt_64, yt_64, X_mean_64, y_mean_64, X_norm_64 = _preprocess_data(
                X_64, y_64, fit_intercept=fit_intercept, normalize=normalize,
                return_mean=True)

            Xt_3264, yt_3264, X_mean_3264, y_mean_3264, X_norm_3264 = (
                _preprocess_data(X_32, y_64, fit_intercept=fit_intercept,
                                 normalize=normalize, return_mean=True))

            Xt_6432, yt_6432, X_mean_6432, y_mean_6432, X_norm_6432 = (
                _preprocess_data(X_64, y_32, fit_intercept=fit_intercept,
                                 normalize=normalize, return_mean=True))

            assert Xt_32.dtype == np.float32
            assert yt_32.dtype == np.float32
            assert X_mean_32.dtype == np.float32
            assert y_mean_32.dtype == np.float32
            assert X_norm_32.dtype == np.float32

            assert Xt_64.dtype == np.float64
            assert yt_64.dtype == np.float64
            assert X_mean_64.dtype == np.float64
            assert y_mean_64.dtype == np.float64
            assert X_norm_64.dtype == np.float64

            assert Xt_3264.dtype == np.float32
            assert yt_3264.dtype == np.float32
            assert X_mean_3264.dtype == np.float32
            assert y_mean_3264.dtype == np.float32
            assert X_norm_3264.dtype == np.float32

            assert Xt_6432.dtype == np.float64
            assert yt_6432.dtype == np.float64
            assert X_mean_6432.dtype == np.float64
            assert y_mean_6432.dtype == np.float64
            assert X_norm_6432.dtype == np.float64

            assert X_32.dtype == np.float32
            assert y_32.dtype == np.float32
            assert X_64.dtype == np.float64
            assert y_64.dtype == np.float64

            assert_array_almost_equal(Xt_32, Xt_64)
            assert_array_almost_equal(yt_32, yt_64)
            assert_array_almost_equal(X_mean_32, X_mean_64)
            assert_array_almost_equal(y_mean_32, y_mean_64)
            assert_array_almost_equal(X_norm_32, X_norm_64)


@pytest.mark.parametrize('n_targets', [None, 2])
def test_rescale_data_dense(n_targets):
    n_samples = 200
    n_features = 2

    sample_weight = 1.0 + rng.rand(n_samples)
    X = rng.rand(n_samples, n_features)
    if n_targets is None:
        y = rng.rand(n_samples)
    else:
        y = rng.rand(n_samples, n_targets)
    rescaled_X, rescaled_y = _rescale_data(X, y, sample_weight)
    rescaled_X2 = X * np.sqrt(sample_weight)[:, np.newaxis]
    if n_targets is None:
        rescaled_y2 = y * np.sqrt(sample_weight)
    else:
        rescaled_y2 = y * np.sqrt(sample_weight)[:, np.newaxis]
    assert_array_almost_equal(rescaled_X, rescaled_X2)
    assert_array_almost_equal(rescaled_y, rescaled_y2)


def test_fused_types_make_dataset():
    iris = load_iris()

    X_32 = iris.data.astype(np.float32)
    y_32 = iris.target.astype(np.float32)
    X_csr_32 = sparse.csr_matrix(X_32)
    sample_weight_32 = np.arange(y_32.size, dtype=np.float32)

    X_64 = iris.data.astype(np.float64)
    y_64 = iris.target.astype(np.float64)
    X_csr_64 = sparse.csr_matrix(X_64)
    sample_weight_64 = np.arange(y_64.size, dtype=np.float64)

    # array
    dataset_32, _ = make_dataset(X_32, y_32, sample_weight_32)
    dataset_64, _ = make_dataset(X_64, y_64, sample_weight_64)
    xi_32, yi_32, _, _ = dataset_32._next_py()
    xi_64, yi_64, _, _ = dataset_64._next_py()
    xi_data_32, _, _ = xi_32
    xi_data_64, _, _ = xi_64

    assert xi_data_32.dtype == np.float32
    assert xi_data_64.dtype == np.float64
    assert_allclose(yi_64, yi_32, rtol=rtol)

    # csr
    datasetcsr_32, _ = make_dataset(X_csr_32, y_32, sample_weight_32)
    datasetcsr_64, _ = make_dataset(X_csr_64, y_64, sample_weight_64)
    xicsr_32, yicsr_32, _, _ = datasetcsr_32._next_py()
    xicsr_64, yicsr_64, _, _ = datasetcsr_64._next_py()
    xicsr_data_32, _, _ = xicsr_32
    xicsr_data_64, _, _ = xicsr_64

    assert xicsr_data_32.dtype == np.float32
    assert xicsr_data_64.dtype == np.float64

    assert_allclose(xicsr_data_64, xicsr_data_32, rtol=rtol)
    assert_allclose(yicsr_64, yicsr_32, rtol=rtol)

    assert_array_equal(xi_data_32, xicsr_data_32)
    assert_array_equal(xi_data_64, xicsr_data_64)
    assert_array_equal(yi_32, yicsr_32)
    assert_array_equal(yi_64, yicsr_64)