1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
# License: BSD 3 clause
import pytest
import numpy as np
from scipy import sparse
from scipy import linalg
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils.fixes import parse_version
from sklearn.linear_model import LinearRegression
from sklearn.linear_model._base import _preprocess_data
from sklearn.linear_model._base import _rescale_data
from sklearn.linear_model._base import make_dataset
from sklearn.utils import check_random_state
from sklearn.datasets import make_sparse_uncorrelated
from sklearn.datasets import make_regression
from sklearn.datasets import load_iris
rng = np.random.RandomState(0)
rtol = 1e-6
def test_linear_regression():
# Test LinearRegression on a simple dataset.
# a simple dataset
X = [[1], [2]]
Y = [1, 2]
reg = LinearRegression()
reg.fit(X, Y)
assert_array_almost_equal(reg.coef_, [1])
assert_array_almost_equal(reg.intercept_, [0])
assert_array_almost_equal(reg.predict(X), [1, 2])
# test it also for degenerate input
X = [[1]]
Y = [0]
reg = LinearRegression()
reg.fit(X, Y)
assert_array_almost_equal(reg.coef_, [0])
assert_array_almost_equal(reg.intercept_, [0])
assert_array_almost_equal(reg.predict(X), [0])
def test_linear_regression_sample_weights():
# TODO: loop over sparse data as well
rng = np.random.RandomState(0)
# It would not work with under-determined systems
for n_samples, n_features in ((6, 5), ):
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)
sample_weight = 1.0 + rng.rand(n_samples)
for intercept in (True, False):
# LinearRegression with explicit sample_weight
reg = LinearRegression(fit_intercept=intercept)
reg.fit(X, y, sample_weight=sample_weight)
coefs1 = reg.coef_
inter1 = reg.intercept_
assert reg.coef_.shape == (X.shape[1], ) # sanity checks
assert reg.score(X, y) > 0.5
# Closed form of the weighted least square
# theta = (X^T W X)^(-1) * X^T W y
W = np.diag(sample_weight)
if intercept is False:
X_aug = X
else:
dummy_column = np.ones(shape=(n_samples, 1))
X_aug = np.concatenate((dummy_column, X), axis=1)
coefs2 = linalg.solve(X_aug.T.dot(W).dot(X_aug),
X_aug.T.dot(W).dot(y))
if intercept is False:
assert_array_almost_equal(coefs1, coefs2)
else:
assert_array_almost_equal(coefs1, coefs2[1:])
assert_almost_equal(inter1, coefs2[0])
def test_raises_value_error_if_sample_weights_greater_than_1d():
# Sample weights must be either scalar or 1D
n_sampless = [2, 3]
n_featuress = [3, 2]
for n_samples, n_features in zip(n_sampless, n_featuress):
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples)
sample_weights_OK = rng.randn(n_samples) ** 2 + 1
sample_weights_OK_1 = 1.
sample_weights_OK_2 = 2.
reg = LinearRegression()
# make sure the "OK" sample weights actually work
reg.fit(X, y, sample_weights_OK)
reg.fit(X, y, sample_weights_OK_1)
reg.fit(X, y, sample_weights_OK_2)
def test_fit_intercept():
# Test assertions on betas shape.
X2 = np.array([[0.38349978, 0.61650022],
[0.58853682, 0.41146318]])
X3 = np.array([[0.27677969, 0.70693172, 0.01628859],
[0.08385139, 0.20692515, 0.70922346]])
y = np.array([1, 1])
lr2_without_intercept = LinearRegression(fit_intercept=False).fit(X2, y)
lr2_with_intercept = LinearRegression().fit(X2, y)
lr3_without_intercept = LinearRegression(fit_intercept=False).fit(X3, y)
lr3_with_intercept = LinearRegression().fit(X3, y)
assert (lr2_with_intercept.coef_.shape ==
lr2_without_intercept.coef_.shape)
assert (lr3_with_intercept.coef_.shape ==
lr3_without_intercept.coef_.shape)
assert (lr2_without_intercept.coef_.ndim ==
lr3_without_intercept.coef_.ndim)
def test_linear_regression_sparse(random_state=0):
# Test that linear regression also works with sparse data
random_state = check_random_state(random_state)
for i in range(10):
n = 100
X = sparse.eye(n, n)
beta = random_state.rand(n)
y = X * beta[:, np.newaxis]
ols = LinearRegression()
ols.fit(X, y.ravel())
assert_array_almost_equal(beta, ols.coef_ + ols.intercept_)
assert_array_almost_equal(ols.predict(X) - y.ravel(), 0)
@pytest.mark.parametrize('normalize', [True, False])
@pytest.mark.parametrize('fit_intercept', [True, False])
def test_linear_regression_sparse_equal_dense(normalize, fit_intercept):
# Test that linear regression agrees between sparse and dense
rng = check_random_state(0)
n_samples = 200
n_features = 2
X = rng.randn(n_samples, n_features)
X[X < 0.1] = 0.
Xcsr = sparse.csr_matrix(X)
y = rng.rand(n_samples)
params = dict(normalize=normalize, fit_intercept=fit_intercept)
clf_dense = LinearRegression(**params)
clf_sparse = LinearRegression(**params)
clf_dense.fit(X, y)
clf_sparse.fit(Xcsr, y)
assert clf_dense.intercept_ == pytest.approx(clf_sparse.intercept_)
assert_allclose(clf_dense.coef_, clf_sparse.coef_)
def test_linear_regression_multiple_outcome(random_state=0):
# Test multiple-outcome linear regressions
X, y = make_regression(random_state=random_state)
Y = np.vstack((y, y)).T
n_features = X.shape[1]
reg = LinearRegression()
reg.fit((X), Y)
assert reg.coef_.shape == (2, n_features)
Y_pred = reg.predict(X)
reg.fit(X, y)
y_pred = reg.predict(X)
assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
def test_linear_regression_sparse_multiple_outcome(random_state=0):
# Test multiple-outcome linear regressions with sparse data
random_state = check_random_state(random_state)
X, y = make_sparse_uncorrelated(random_state=random_state)
X = sparse.coo_matrix(X)
Y = np.vstack((y, y)).T
n_features = X.shape[1]
ols = LinearRegression()
ols.fit(X, Y)
assert ols.coef_.shape == (2, n_features)
Y_pred = ols.predict(X)
ols.fit(X, y.ravel())
y_pred = ols.predict(X)
assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
def test_linear_regression_pd_sparse_dataframe_warning():
pd = pytest.importorskip('pandas')
# restrict the pd versions < '0.24.0' as they have a bug in is_sparse func
if parse_version(pd.__version__) < parse_version('0.24.0'):
pytest.skip("pandas 0.24+ required.")
# Warning is raised only when some of the columns is sparse
df = pd.DataFrame({'0': np.random.randn(10)})
for col in range(1, 4):
arr = np.random.randn(10)
arr[:8] = 0
# all columns but the first column is sparse
if col != 0:
arr = pd.arrays.SparseArray(arr, fill_value=0)
df[str(col)] = arr
msg = "pandas.DataFrame with sparse columns found."
with pytest.warns(UserWarning, match=msg):
reg = LinearRegression()
reg.fit(df.iloc[:, 0:2], df.iloc[:, 3])
# does not warn when the whole dataframe is sparse
df['0'] = pd.arrays.SparseArray(df['0'], fill_value=0)
assert hasattr(df, "sparse")
with pytest.warns(None) as record:
reg.fit(df.iloc[:, 0:2], df.iloc[:, 3])
assert not record
def test_preprocess_data():
n_samples = 200
n_features = 2
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
expected_X_mean = np.mean(X, axis=0)
expected_X_norm = np.std(X, axis=0) * np.sqrt(X.shape[0])
expected_y_mean = np.mean(y, axis=0)
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=False, normalize=False)
assert_array_almost_equal(X_mean, np.zeros(n_features))
assert_array_almost_equal(y_mean, 0)
assert_array_almost_equal(X_norm, np.ones(n_features))
assert_array_almost_equal(Xt, X)
assert_array_almost_equal(yt, y)
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=True, normalize=False)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(X_norm, np.ones(n_features))
assert_array_almost_equal(Xt, X - expected_X_mean)
assert_array_almost_equal(yt, y - expected_y_mean)
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=True, normalize=True)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(X_norm, expected_X_norm)
assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_norm)
assert_array_almost_equal(yt, y - expected_y_mean)
def test_preprocess_data_multioutput():
n_samples = 200
n_features = 3
n_outputs = 2
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples, n_outputs)
expected_y_mean = np.mean(y, axis=0)
args = [X, sparse.csc_matrix(X)]
for X in args:
_, yt, _, y_mean, _ = _preprocess_data(X, y, fit_intercept=False,
normalize=False)
assert_array_almost_equal(y_mean, np.zeros(n_outputs))
assert_array_almost_equal(yt, y)
_, yt, _, y_mean, _ = _preprocess_data(X, y, fit_intercept=True,
normalize=False)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(yt, y - y_mean)
_, yt, _, y_mean, _ = _preprocess_data(X, y, fit_intercept=True,
normalize=True)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(yt, y - y_mean)
def test_preprocess_data_weighted():
n_samples = 200
n_features = 2
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
sample_weight = rng.rand(n_samples)
expected_X_mean = np.average(X, axis=0, weights=sample_weight)
expected_y_mean = np.average(y, axis=0, weights=sample_weight)
# XXX: if normalize=True, should we expect a weighted standard deviation?
# Currently not weighted, but calculated with respect to weighted mean
expected_X_norm = (np.sqrt(X.shape[0]) *
np.mean((X - expected_X_mean) ** 2, axis=0) ** .5)
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=True, normalize=False,
sample_weight=sample_weight)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(X_norm, np.ones(n_features))
assert_array_almost_equal(Xt, X - expected_X_mean)
assert_array_almost_equal(yt, y - expected_y_mean)
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=True, normalize=True,
sample_weight=sample_weight)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(X_norm, expected_X_norm)
assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_norm)
assert_array_almost_equal(yt, y - expected_y_mean)
def test_sparse_preprocess_data_with_return_mean():
n_samples = 200
n_features = 2
# random_state not supported yet in sparse.rand
X = sparse.rand(n_samples, n_features, density=.5) # , random_state=rng
X = X.tolil()
y = rng.rand(n_samples)
XA = X.toarray()
expected_X_norm = np.std(XA, axis=0) * np.sqrt(X.shape[0])
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=False, normalize=False,
return_mean=True)
assert_array_almost_equal(X_mean, np.zeros(n_features))
assert_array_almost_equal(y_mean, 0)
assert_array_almost_equal(X_norm, np.ones(n_features))
assert_array_almost_equal(Xt.A, XA)
assert_array_almost_equal(yt, y)
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=True, normalize=False,
return_mean=True)
assert_array_almost_equal(X_mean, np.mean(XA, axis=0))
assert_array_almost_equal(y_mean, np.mean(y, axis=0))
assert_array_almost_equal(X_norm, np.ones(n_features))
assert_array_almost_equal(Xt.A, XA)
assert_array_almost_equal(yt, y - np.mean(y, axis=0))
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=True, normalize=True,
return_mean=True)
assert_array_almost_equal(X_mean, np.mean(XA, axis=0))
assert_array_almost_equal(y_mean, np.mean(y, axis=0))
assert_array_almost_equal(X_norm, expected_X_norm)
assert_array_almost_equal(Xt.A, XA / expected_X_norm)
assert_array_almost_equal(yt, y - np.mean(y, axis=0))
def test_csr_preprocess_data():
# Test output format of _preprocess_data, when input is csr
X, y = make_regression()
X[X < 2.5] = 0.0
csr = sparse.csr_matrix(X)
csr_, y, _, _, _ = _preprocess_data(csr, y, True)
assert csr_.getformat() == 'csr'
@pytest.mark.parametrize('is_sparse', (True, False))
@pytest.mark.parametrize('to_copy', (True, False))
def test_preprocess_copy_data_no_checks(is_sparse, to_copy):
X, y = make_regression()
X[X < 2.5] = 0.0
if is_sparse:
X = sparse.csr_matrix(X)
X_, y_, _, _, _ = _preprocess_data(X, y, True,
copy=to_copy, check_input=False)
if to_copy and is_sparse:
assert not np.may_share_memory(X_.data, X.data)
elif to_copy:
assert not np.may_share_memory(X_, X)
elif is_sparse:
assert np.may_share_memory(X_.data, X.data)
else:
assert np.may_share_memory(X_, X)
def test_dtype_preprocess_data():
n_samples = 200
n_features = 2
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
X_32 = np.asarray(X, dtype=np.float32)
y_32 = np.asarray(y, dtype=np.float32)
X_64 = np.asarray(X, dtype=np.float64)
y_64 = np.asarray(y, dtype=np.float64)
for fit_intercept in [True, False]:
for normalize in [True, False]:
Xt_32, yt_32, X_mean_32, y_mean_32, X_norm_32 = _preprocess_data(
X_32, y_32, fit_intercept=fit_intercept, normalize=normalize,
return_mean=True)
Xt_64, yt_64, X_mean_64, y_mean_64, X_norm_64 = _preprocess_data(
X_64, y_64, fit_intercept=fit_intercept, normalize=normalize,
return_mean=True)
Xt_3264, yt_3264, X_mean_3264, y_mean_3264, X_norm_3264 = (
_preprocess_data(X_32, y_64, fit_intercept=fit_intercept,
normalize=normalize, return_mean=True))
Xt_6432, yt_6432, X_mean_6432, y_mean_6432, X_norm_6432 = (
_preprocess_data(X_64, y_32, fit_intercept=fit_intercept,
normalize=normalize, return_mean=True))
assert Xt_32.dtype == np.float32
assert yt_32.dtype == np.float32
assert X_mean_32.dtype == np.float32
assert y_mean_32.dtype == np.float32
assert X_norm_32.dtype == np.float32
assert Xt_64.dtype == np.float64
assert yt_64.dtype == np.float64
assert X_mean_64.dtype == np.float64
assert y_mean_64.dtype == np.float64
assert X_norm_64.dtype == np.float64
assert Xt_3264.dtype == np.float32
assert yt_3264.dtype == np.float32
assert X_mean_3264.dtype == np.float32
assert y_mean_3264.dtype == np.float32
assert X_norm_3264.dtype == np.float32
assert Xt_6432.dtype == np.float64
assert yt_6432.dtype == np.float64
assert X_mean_6432.dtype == np.float64
assert y_mean_6432.dtype == np.float64
assert X_norm_6432.dtype == np.float64
assert X_32.dtype == np.float32
assert y_32.dtype == np.float32
assert X_64.dtype == np.float64
assert y_64.dtype == np.float64
assert_array_almost_equal(Xt_32, Xt_64)
assert_array_almost_equal(yt_32, yt_64)
assert_array_almost_equal(X_mean_32, X_mean_64)
assert_array_almost_equal(y_mean_32, y_mean_64)
assert_array_almost_equal(X_norm_32, X_norm_64)
@pytest.mark.parametrize('n_targets', [None, 2])
def test_rescale_data_dense(n_targets):
n_samples = 200
n_features = 2
sample_weight = 1.0 + rng.rand(n_samples)
X = rng.rand(n_samples, n_features)
if n_targets is None:
y = rng.rand(n_samples)
else:
y = rng.rand(n_samples, n_targets)
rescaled_X, rescaled_y = _rescale_data(X, y, sample_weight)
rescaled_X2 = X * np.sqrt(sample_weight)[:, np.newaxis]
if n_targets is None:
rescaled_y2 = y * np.sqrt(sample_weight)
else:
rescaled_y2 = y * np.sqrt(sample_weight)[:, np.newaxis]
assert_array_almost_equal(rescaled_X, rescaled_X2)
assert_array_almost_equal(rescaled_y, rescaled_y2)
def test_fused_types_make_dataset():
iris = load_iris()
X_32 = iris.data.astype(np.float32)
y_32 = iris.target.astype(np.float32)
X_csr_32 = sparse.csr_matrix(X_32)
sample_weight_32 = np.arange(y_32.size, dtype=np.float32)
X_64 = iris.data.astype(np.float64)
y_64 = iris.target.astype(np.float64)
X_csr_64 = sparse.csr_matrix(X_64)
sample_weight_64 = np.arange(y_64.size, dtype=np.float64)
# array
dataset_32, _ = make_dataset(X_32, y_32, sample_weight_32)
dataset_64, _ = make_dataset(X_64, y_64, sample_weight_64)
xi_32, yi_32, _, _ = dataset_32._next_py()
xi_64, yi_64, _, _ = dataset_64._next_py()
xi_data_32, _, _ = xi_32
xi_data_64, _, _ = xi_64
assert xi_data_32.dtype == np.float32
assert xi_data_64.dtype == np.float64
assert_allclose(yi_64, yi_32, rtol=rtol)
# csr
datasetcsr_32, _ = make_dataset(X_csr_32, y_32, sample_weight_32)
datasetcsr_64, _ = make_dataset(X_csr_64, y_64, sample_weight_64)
xicsr_32, yicsr_32, _, _ = datasetcsr_32._next_py()
xicsr_64, yicsr_64, _, _ = datasetcsr_64._next_py()
xicsr_data_32, _, _ = xicsr_32
xicsr_data_64, _, _ = xicsr_64
assert xicsr_data_32.dtype == np.float32
assert xicsr_data_64.dtype == np.float64
assert_allclose(xicsr_data_64, xicsr_data_32, rtol=rtol)
assert_allclose(yicsr_64, yicsr_32, rtol=rtol)
assert_array_equal(xi_data_32, xicsr_data_32)
assert_array_equal(xi_data_64, xicsr_data_64)
assert_array_equal(yi_32, yicsr_32)
assert_array_equal(yi_64, yicsr_64)
|