File: test_ridge.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (1326 lines) | stat: -rw-r--r-- 46,944 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
import numpy as np
import scipy.sparse as sp
from scipy import linalg
from itertools import product

import pytest

from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_raises_regex
from sklearn.utils._testing import ignore_warnings
from sklearn.utils._testing import assert_warns

from sklearn.exceptions import ConvergenceWarning

from sklearn import datasets
from sklearn.metrics import mean_squared_error
from sklearn.metrics import make_scorer
from sklearn.metrics import get_scorer

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import ridge_regression
from sklearn.linear_model import Ridge
from sklearn.linear_model._ridge import _RidgeGCV
from sklearn.linear_model import RidgeCV
from sklearn.linear_model import RidgeClassifier
from sklearn.linear_model import RidgeClassifierCV
from sklearn.linear_model._ridge import _solve_cholesky
from sklearn.linear_model._ridge import _solve_cholesky_kernel
from sklearn.linear_model._ridge import _check_gcv_mode
from sklearn.linear_model._ridge import _X_CenterStackOp
from sklearn.datasets import make_regression
from sklearn.datasets import make_classification

from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold, GroupKFold, cross_val_predict

from sklearn.utils import check_random_state
from sklearn.datasets import make_multilabel_classification

diabetes = datasets.load_diabetes()
X_diabetes, y_diabetes = diabetes.data, diabetes.target
ind = np.arange(X_diabetes.shape[0])
rng = np.random.RandomState(0)
rng.shuffle(ind)
ind = ind[:200]
X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind]

iris = datasets.load_iris()

X_iris = sp.csr_matrix(iris.data)
y_iris = iris.target


DENSE_FILTER = lambda X: X
SPARSE_FILTER = lambda X: sp.csr_matrix(X)


def _accuracy_callable(y_test, y_pred):
    return np.mean(y_test == y_pred)


def _mean_squared_error_callable(y_test, y_pred):
    return ((y_test - y_pred) ** 2).mean()


@pytest.mark.parametrize('solver',
                         ("svd", "sparse_cg", "cholesky", "lsqr", "sag"))
def test_ridge(solver):
    # Ridge regression convergence test using score
    # TODO: for this test to be robust, we should use a dataset instead
    # of np.random.
    rng = np.random.RandomState(0)
    alpha = 1.0

    # With more samples than features
    n_samples, n_features = 6, 5
    y = rng.randn(n_samples)
    X = rng.randn(n_samples, n_features)

    ridge = Ridge(alpha=alpha, solver=solver)
    ridge.fit(X, y)
    assert ridge.coef_.shape == (X.shape[1], )
    assert ridge.score(X, y) > 0.47

    if solver in ("cholesky", "sag"):
        # Currently the only solvers to support sample_weight.
        ridge.fit(X, y, sample_weight=np.ones(n_samples))
        assert ridge.score(X, y) > 0.47

    # With more features than samples
    n_samples, n_features = 5, 10
    y = rng.randn(n_samples)
    X = rng.randn(n_samples, n_features)
    ridge = Ridge(alpha=alpha, solver=solver)
    ridge.fit(X, y)
    assert ridge.score(X, y) > .9

    if solver in ("cholesky", "sag"):
        # Currently the only solvers to support sample_weight.
        ridge.fit(X, y, sample_weight=np.ones(n_samples))
        assert ridge.score(X, y) > 0.9


def test_primal_dual_relationship():
    y = y_diabetes.reshape(-1, 1)
    coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2])
    K = np.dot(X_diabetes, X_diabetes.T)
    dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2])
    coef2 = np.dot(X_diabetes.T, dual_coef).T
    assert_array_almost_equal(coef, coef2)


def test_ridge_singular():
    # test on a singular matrix
    rng = np.random.RandomState(0)
    n_samples, n_features = 6, 6
    y = rng.randn(n_samples // 2)
    y = np.concatenate((y, y))
    X = rng.randn(n_samples // 2, n_features)
    X = np.concatenate((X, X), axis=0)

    ridge = Ridge(alpha=0)
    ridge.fit(X, y)
    assert ridge.score(X, y) > 0.9


def test_ridge_regression_sample_weights():
    rng = np.random.RandomState(0)

    for solver in ("cholesky", ):
        for n_samples, n_features in ((6, 5), (5, 10)):
            for alpha in (1.0, 1e-2):
                y = rng.randn(n_samples)
                X = rng.randn(n_samples, n_features)
                sample_weight = 1.0 + rng.rand(n_samples)

                coefs = ridge_regression(X, y,
                                         alpha=alpha,
                                         sample_weight=sample_weight,
                                         solver=solver)

                # Sample weight can be implemented via a simple rescaling
                # for the square loss.
                coefs2 = ridge_regression(
                    X * np.sqrt(sample_weight)[:, np.newaxis],
                    y * np.sqrt(sample_weight),
                    alpha=alpha, solver=solver)
                assert_array_almost_equal(coefs, coefs2)


def test_ridge_regression_convergence_fail():
    rng = np.random.RandomState(0)
    y = rng.randn(5)
    X = rng.randn(5, 10)

    assert_warns(ConvergenceWarning, ridge_regression,
                 X, y, alpha=1.0, solver="sparse_cg",
                 tol=0., max_iter=None, verbose=1)


def test_ridge_sample_weights():
    # TODO: loop over sparse data as well
    # Note: parametrizing this test with pytest results in failed
    #       assertions, meaning that is is not extremely robust

    rng = np.random.RandomState(0)
    param_grid = product((1.0, 1e-2), (True, False),
                         ('svd', 'cholesky', 'lsqr', 'sparse_cg'))

    for n_samples, n_features in ((6, 5), (5, 10)):

        y = rng.randn(n_samples)
        X = rng.randn(n_samples, n_features)
        sample_weight = 1.0 + rng.rand(n_samples)

        for (alpha, intercept, solver) in param_grid:

            # Ridge with explicit sample_weight
            est = Ridge(alpha=alpha, fit_intercept=intercept,
                        solver=solver, tol=1e-6)
            est.fit(X, y, sample_weight=sample_weight)
            coefs = est.coef_
            inter = est.intercept_

            # Closed form of the weighted regularized least square
            # theta = (X^T W X + alpha I)^(-1) * X^T W y
            W = np.diag(sample_weight)
            if intercept is False:
                X_aug = X
                I = np.eye(n_features)
            else:
                dummy_column = np.ones(shape=(n_samples, 1))
                X_aug = np.concatenate((dummy_column, X), axis=1)
                I = np.eye(n_features + 1)
                I[0, 0] = 0

            cf_coefs = linalg.solve(X_aug.T.dot(W).dot(X_aug) + alpha * I,
                                    X_aug.T.dot(W).dot(y))

            if intercept is False:
                assert_array_almost_equal(coefs, cf_coefs)
            else:
                assert_array_almost_equal(coefs, cf_coefs[1:])
                assert_almost_equal(inter, cf_coefs[0])


def test_ridge_shapes():
    # Test shape of coef_ and intercept_
    rng = np.random.RandomState(0)
    n_samples, n_features = 5, 10
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples)
    Y1 = y[:, np.newaxis]
    Y = np.c_[y, 1 + y]

    ridge = Ridge()

    ridge.fit(X, y)
    assert ridge.coef_.shape == (n_features,)
    assert ridge.intercept_.shape == ()

    ridge.fit(X, Y1)
    assert ridge.coef_.shape == (1, n_features)
    assert ridge.intercept_.shape == (1, )

    ridge.fit(X, Y)
    assert ridge.coef_.shape == (2, n_features)
    assert ridge.intercept_.shape == (2, )


def test_ridge_intercept():
    # Test intercept with multiple targets GH issue #708
    rng = np.random.RandomState(0)
    n_samples, n_features = 5, 10
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples)
    Y = np.c_[y, 1. + y]

    ridge = Ridge()

    ridge.fit(X, y)
    intercept = ridge.intercept_

    ridge.fit(X, Y)
    assert_almost_equal(ridge.intercept_[0], intercept)
    assert_almost_equal(ridge.intercept_[1], intercept + 1.)


def test_toy_ridge_object():
    # Test BayesianRegression ridge classifier
    # TODO: test also n_samples > n_features
    X = np.array([[1], [2]])
    Y = np.array([1, 2])
    reg = Ridge(alpha=0.0)
    reg.fit(X, Y)
    X_test = [[1], [2], [3], [4]]
    assert_almost_equal(reg.predict(X_test), [1., 2, 3, 4])

    assert len(reg.coef_.shape) == 1
    assert type(reg.intercept_) == np.float64

    Y = np.vstack((Y, Y)).T

    reg.fit(X, Y)
    X_test = [[1], [2], [3], [4]]

    assert len(reg.coef_.shape) == 2
    assert type(reg.intercept_) == np.ndarray


def test_ridge_vs_lstsq():
    # On alpha=0., Ridge and OLS yield the same solution.

    rng = np.random.RandomState(0)
    # we need more samples than features
    n_samples, n_features = 5, 4
    y = rng.randn(n_samples)
    X = rng.randn(n_samples, n_features)

    ridge = Ridge(alpha=0., fit_intercept=False)
    ols = LinearRegression(fit_intercept=False)

    ridge.fit(X, y)
    ols.fit(X, y)
    assert_almost_equal(ridge.coef_, ols.coef_)

    ridge.fit(X, y)
    ols.fit(X, y)
    assert_almost_equal(ridge.coef_, ols.coef_)


def test_ridge_individual_penalties():
    # Tests the ridge object using individual penalties

    rng = np.random.RandomState(42)

    n_samples, n_features, n_targets = 20, 10, 5
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples, n_targets)

    penalties = np.arange(n_targets)

    coef_cholesky = np.array([
        Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_
        for alpha, target in zip(penalties, y.T)])

    coefs_indiv_pen = [
        Ridge(alpha=penalties, solver=solver, tol=1e-8).fit(X, y).coef_
        for solver in ['svd', 'sparse_cg', 'lsqr', 'cholesky', 'sag', 'saga']]
    for coef_indiv_pen in coefs_indiv_pen:
        assert_array_almost_equal(coef_cholesky, coef_indiv_pen)

    # Test error is raised when number of targets and penalties do not match.
    ridge = Ridge(alpha=penalties[:-1])
    assert_raises(ValueError, ridge.fit, X, y)


@pytest.mark.parametrize('n_col', [(), (1,), (3,)])
def test_X_CenterStackOp(n_col):
    rng = np.random.RandomState(0)
    X = rng.randn(11, 8)
    X_m = rng.randn(8)
    sqrt_sw = rng.randn(len(X))
    Y = rng.randn(11, *n_col)
    A = rng.randn(9, *n_col)
    operator = _X_CenterStackOp(sp.csr_matrix(X), X_m, sqrt_sw)
    reference_operator = np.hstack(
        [X - sqrt_sw[:, None] * X_m, sqrt_sw[:, None]])
    assert_allclose(reference_operator.dot(A), operator.dot(A))
    assert_allclose(reference_operator.T.dot(Y), operator.T.dot(Y))


@pytest.mark.parametrize('shape', [(10, 1), (13, 9), (3, 7), (2, 2), (20, 20)])
@pytest.mark.parametrize('uniform_weights', [True, False])
def test_compute_gram(shape, uniform_weights):
    rng = np.random.RandomState(0)
    X = rng.randn(*shape)
    if uniform_weights:
        sw = np.ones(X.shape[0])
    else:
        sw = rng.chisquare(1, shape[0])
    sqrt_sw = np.sqrt(sw)
    X_mean = np.average(X, axis=0, weights=sw)
    X_centered = (X - X_mean) * sqrt_sw[:, None]
    true_gram = X_centered.dot(X_centered.T)
    X_sparse = sp.csr_matrix(X * sqrt_sw[:, None])
    gcv = _RidgeGCV(fit_intercept=True)
    computed_gram, computed_mean = gcv._compute_gram(X_sparse, sqrt_sw)
    assert_allclose(X_mean, computed_mean)
    assert_allclose(true_gram, computed_gram)


@pytest.mark.parametrize('shape', [(10, 1), (13, 9), (3, 7), (2, 2), (20, 20)])
@pytest.mark.parametrize('uniform_weights', [True, False])
def test_compute_covariance(shape, uniform_weights):
    rng = np.random.RandomState(0)
    X = rng.randn(*shape)
    if uniform_weights:
        sw = np.ones(X.shape[0])
    else:
        sw = rng.chisquare(1, shape[0])
    sqrt_sw = np.sqrt(sw)
    X_mean = np.average(X, axis=0, weights=sw)
    X_centered = (X - X_mean) * sqrt_sw[:, None]
    true_covariance = X_centered.T.dot(X_centered)
    X_sparse = sp.csr_matrix(X * sqrt_sw[:, None])
    gcv = _RidgeGCV(fit_intercept=True)
    computed_cov, computed_mean = gcv._compute_covariance(X_sparse, sqrt_sw)
    assert_allclose(X_mean, computed_mean)
    assert_allclose(true_covariance, computed_cov)


def _make_sparse_offset_regression(
        n_samples=100, n_features=100, proportion_nonzero=.5,
        n_informative=10, n_targets=1, bias=13., X_offset=30.,
        noise=30., shuffle=True, coef=False, random_state=None):
    X, y, c = make_regression(
        n_samples=n_samples, n_features=n_features,
        n_informative=n_informative, n_targets=n_targets, bias=bias,
        noise=noise, shuffle=shuffle,
        coef=True, random_state=random_state)
    if n_features == 1:
        c = np.asarray([c])
    X += X_offset
    mask = np.random.RandomState(random_state).binomial(
        1, proportion_nonzero, X.shape) > 0
    removed_X = X.copy()
    X[~mask] = 0.
    removed_X[mask] = 0.
    y -= removed_X.dot(c)
    if n_features == 1:
        c = c[0]
    if coef:
        return X, y, c
    return X, y


@pytest.mark.parametrize(
    'solver, sparse_X',
    ((solver, sparse_X) for
     (solver, sparse_X) in product(
         ['cholesky', 'sag', 'sparse_cg', 'lsqr', 'saga', 'ridgecv'],
         [False, True])
     if not (sparse_X and solver not in ['sparse_cg', 'ridgecv'])))
@pytest.mark.parametrize(
    'n_samples,dtype,proportion_nonzero',
    [(20, 'float32', .1), (40, 'float32', 1.), (20, 'float64', .2)])
@pytest.mark.parametrize('seed', np.arange(3))
def test_solver_consistency(
        solver, proportion_nonzero, n_samples, dtype, sparse_X, seed):
    alpha = 1.
    noise = 50. if proportion_nonzero > .9 else 500.
    X, y = _make_sparse_offset_regression(
        bias=10, n_features=30, proportion_nonzero=proportion_nonzero,
        noise=noise, random_state=seed, n_samples=n_samples)
    svd_ridge = Ridge(
        solver='svd', normalize=True, alpha=alpha).fit(X, y)
    X = X.astype(dtype, copy=False)
    y = y.astype(dtype, copy=False)
    if sparse_X:
        X = sp.csr_matrix(X)
    if solver == 'ridgecv':
        ridge = RidgeCV(alphas=[alpha], normalize=True)
    else:
        ridge = Ridge(solver=solver, tol=1e-10, normalize=True, alpha=alpha)
    ridge.fit(X, y)
    assert_allclose(
        ridge.coef_, svd_ridge.coef_, atol=1e-3, rtol=1e-3)
    assert_allclose(
        ridge.intercept_, svd_ridge.intercept_, atol=1e-3, rtol=1e-3)


@pytest.mark.parametrize('gcv_mode', ['svd', 'eigen'])
@pytest.mark.parametrize('X_constructor', [np.asarray, sp.csr_matrix])
@pytest.mark.parametrize('X_shape', [(11, 8), (11, 20)])
@pytest.mark.parametrize('fit_intercept', [True, False])
@pytest.mark.parametrize(
    'y_shape, normalize, noise',
    [
        ((11,), True, 1.),
        ((11, 1), False, 30.),
        ((11, 3), False, 150.),
    ]
)
def test_ridge_gcv_vs_ridge_loo_cv(
        gcv_mode, X_constructor, X_shape, y_shape,
        fit_intercept, normalize, noise):
    n_samples, n_features = X_shape
    n_targets = y_shape[-1] if len(y_shape) == 2 else 1
    X, y = _make_sparse_offset_regression(
        n_samples=n_samples, n_features=n_features, n_targets=n_targets,
        random_state=0, shuffle=False, noise=noise, n_informative=5
    )
    y = y.reshape(y_shape)

    alphas = [1e-3, .1, 1., 10., 1e3]
    loo_ridge = RidgeCV(cv=n_samples, fit_intercept=fit_intercept,
                        alphas=alphas, scoring='neg_mean_squared_error',
                        normalize=normalize)
    gcv_ridge = RidgeCV(gcv_mode=gcv_mode, fit_intercept=fit_intercept,
                        alphas=alphas, normalize=normalize)

    loo_ridge.fit(X, y)

    X_gcv = X_constructor(X)
    gcv_ridge.fit(X_gcv, y)

    assert gcv_ridge.alpha_ == pytest.approx(loo_ridge.alpha_)
    assert_allclose(gcv_ridge.coef_, loo_ridge.coef_, rtol=1e-3)
    assert_allclose(gcv_ridge.intercept_, loo_ridge.intercept_, rtol=1e-3)


def test_ridge_loo_cv_asym_scoring():
    # checking on asymmetric scoring
    scoring = 'explained_variance'
    n_samples, n_features = 10, 5
    n_targets = 1
    X, y = _make_sparse_offset_regression(
        n_samples=n_samples, n_features=n_features, n_targets=n_targets,
        random_state=0, shuffle=False, noise=1, n_informative=5
    )

    alphas = [1e-3, .1, 1., 10., 1e3]
    loo_ridge = RidgeCV(cv=n_samples, fit_intercept=True,
                        alphas=alphas, scoring=scoring,
                        normalize=True)

    gcv_ridge = RidgeCV(fit_intercept=True,
                        alphas=alphas, scoring=scoring,
                        normalize=True)

    loo_ridge.fit(X, y)
    gcv_ridge.fit(X, y)

    assert gcv_ridge.alpha_ == pytest.approx(loo_ridge.alpha_)
    assert_allclose(gcv_ridge.coef_, loo_ridge.coef_, rtol=1e-3)
    assert_allclose(gcv_ridge.intercept_, loo_ridge.intercept_, rtol=1e-3)


@pytest.mark.parametrize('gcv_mode', ['svd', 'eigen'])
@pytest.mark.parametrize('X_constructor', [np.asarray, sp.csr_matrix])
@pytest.mark.parametrize('n_features', [8, 20])
@pytest.mark.parametrize('y_shape, fit_intercept, noise',
                         [((11,), True, 1.),
                          ((11, 1), True, 20.),
                          ((11, 3), True, 150.),
                          ((11, 3), False, 30.)])
def test_ridge_gcv_sample_weights(
        gcv_mode, X_constructor, fit_intercept, n_features, y_shape, noise):
    alphas = [1e-3, .1, 1., 10., 1e3]
    rng = np.random.RandomState(0)
    n_targets = y_shape[-1] if len(y_shape) == 2 else 1
    X, y = _make_sparse_offset_regression(
        n_samples=11, n_features=n_features, n_targets=n_targets,
        random_state=0, shuffle=False, noise=noise)
    y = y.reshape(y_shape)

    sample_weight = 3 * rng.randn(len(X))
    sample_weight = (sample_weight - sample_weight.min() + 1).astype(int)
    indices = np.repeat(np.arange(X.shape[0]), sample_weight)
    sample_weight = sample_weight.astype(float)
    X_tiled, y_tiled = X[indices], y[indices]

    cv = GroupKFold(n_splits=X.shape[0])
    splits = cv.split(X_tiled, y_tiled, groups=indices)
    kfold = RidgeCV(
        alphas=alphas, cv=splits, scoring='neg_mean_squared_error',
        fit_intercept=fit_intercept)
    # ignore warning from GridSearchCV: FutureWarning: The default
    # of the `iid` parameter will change from True to False in version 0.22
    # and will be removed in 0.24
    with ignore_warnings(category=FutureWarning):
        kfold.fit(X_tiled, y_tiled)

    ridge_reg = Ridge(alpha=kfold.alpha_, fit_intercept=fit_intercept)
    splits = cv.split(X_tiled, y_tiled, groups=indices)
    predictions = cross_val_predict(ridge_reg, X_tiled, y_tiled, cv=splits)
    kfold_errors = (y_tiled - predictions)**2
    kfold_errors = [
        np.sum(kfold_errors[indices == i], axis=0) for
        i in np.arange(X.shape[0])]
    kfold_errors = np.asarray(kfold_errors)

    X_gcv = X_constructor(X)
    gcv_ridge = RidgeCV(
        alphas=alphas, store_cv_values=True,
        gcv_mode=gcv_mode, fit_intercept=fit_intercept)
    gcv_ridge.fit(X_gcv, y, sample_weight=sample_weight)
    if len(y_shape) == 2:
        gcv_errors = gcv_ridge.cv_values_[:, :, alphas.index(kfold.alpha_)]
    else:
        gcv_errors = gcv_ridge.cv_values_[:, alphas.index(kfold.alpha_)]

    assert kfold.alpha_ == pytest.approx(gcv_ridge.alpha_)
    assert_allclose(gcv_errors, kfold_errors, rtol=1e-3)
    assert_allclose(gcv_ridge.coef_, kfold.coef_, rtol=1e-3)
    assert_allclose(gcv_ridge.intercept_, kfold.intercept_, rtol=1e-3)


@pytest.mark.parametrize('mode', [True, 1, 5, 'bad', 'gcv'])
def test_check_gcv_mode_error(mode):
    X, y = make_regression(n_samples=5, n_features=2)
    gcv = RidgeCV(gcv_mode=mode)
    with pytest.raises(ValueError, match="Unknown value for 'gcv_mode'"):
        gcv.fit(X, y)
    with pytest.raises(ValueError, match="Unknown value for 'gcv_mode'"):
        _check_gcv_mode(X, mode)


@pytest.mark.parametrize("sparse", [True, False])
@pytest.mark.parametrize(
    'mode, mode_n_greater_than_p, mode_p_greater_than_n',
    [(None, 'svd', 'eigen'),
     ('auto', 'svd', 'eigen'),
     ('eigen', 'eigen', 'eigen'),
     ('svd', 'svd', 'svd')]
)
def test_check_gcv_mode_choice(sparse, mode, mode_n_greater_than_p,
                               mode_p_greater_than_n):
    X, _ = make_regression(n_samples=5, n_features=2)
    if sparse:
        X = sp.csr_matrix(X)
    assert _check_gcv_mode(X, mode) == mode_n_greater_than_p
    assert _check_gcv_mode(X.T, mode) == mode_p_greater_than_n


def _test_ridge_loo(filter_):
    # test that can work with both dense or sparse matrices
    n_samples = X_diabetes.shape[0]

    ret = []

    fit_intercept = filter_ == DENSE_FILTER
    ridge_gcv = _RidgeGCV(fit_intercept=fit_intercept)

    # check best alpha
    ridge_gcv.fit(filter_(X_diabetes), y_diabetes)
    alpha_ = ridge_gcv.alpha_
    ret.append(alpha_)

    # check that we get same best alpha with custom loss_func
    f = ignore_warnings
    scoring = make_scorer(mean_squared_error, greater_is_better=False)
    ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring)
    f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes)
    assert ridge_gcv2.alpha_ == pytest.approx(alpha_)

    # check that we get same best alpha with custom score_func
    func = lambda x, y: -mean_squared_error(x, y)
    scoring = make_scorer(func)
    ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring)
    f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes)
    assert ridge_gcv3.alpha_ == pytest.approx(alpha_)

    # check that we get same best alpha with a scorer
    scorer = get_scorer('neg_mean_squared_error')
    ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer)
    ridge_gcv4.fit(filter_(X_diabetes), y_diabetes)
    assert ridge_gcv4.alpha_ == pytest.approx(alpha_)

    # check that we get same best alpha with sample weights
    if filter_ == DENSE_FILTER:
        ridge_gcv.fit(filter_(X_diabetes), y_diabetes,
                      sample_weight=np.ones(n_samples))
        assert ridge_gcv.alpha_ == pytest.approx(alpha_)

    # simulate several responses
    Y = np.vstack((y_diabetes, y_diabetes)).T

    ridge_gcv.fit(filter_(X_diabetes), Y)
    Y_pred = ridge_gcv.predict(filter_(X_diabetes))
    ridge_gcv.fit(filter_(X_diabetes), y_diabetes)
    y_pred = ridge_gcv.predict(filter_(X_diabetes))

    assert_allclose(np.vstack((y_pred, y_pred)).T,
                    Y_pred, rtol=1e-5)

    return ret


def _test_ridge_cv_normalize(filter_):
    ridge_cv = RidgeCV(normalize=True, cv=3)
    ridge_cv.fit(filter_(10. * X_diabetes), y_diabetes)

    gs = GridSearchCV(Ridge(normalize=True, solver='sparse_cg'), cv=3,
                      param_grid={'alpha': ridge_cv.alphas})
    gs.fit(filter_(10. * X_diabetes), y_diabetes)
    assert gs.best_estimator_.alpha == ridge_cv.alpha_


def _test_ridge_cv(filter_):
    ridge_cv = RidgeCV()
    ridge_cv.fit(filter_(X_diabetes), y_diabetes)
    ridge_cv.predict(filter_(X_diabetes))

    assert len(ridge_cv.coef_.shape) == 1
    assert type(ridge_cv.intercept_) == np.float64

    cv = KFold(5)
    ridge_cv.set_params(cv=cv)
    ridge_cv.fit(filter_(X_diabetes), y_diabetes)
    ridge_cv.predict(filter_(X_diabetes))

    assert len(ridge_cv.coef_.shape) == 1
    assert type(ridge_cv.intercept_) == np.float64


@pytest.mark.parametrize(
    "ridge, make_dataset",
    [(RidgeCV(store_cv_values=False), make_regression),
     (RidgeClassifierCV(store_cv_values=False), make_classification)]
)
def test_ridge_gcv_cv_values_not_stored(ridge, make_dataset):
    # Check that `cv_values_` is not stored when store_cv_values is False
    X, y = make_dataset(n_samples=6, random_state=42)
    ridge.fit(X, y)
    assert not hasattr(ridge, "cv_values_")


@pytest.mark.parametrize(
    "ridge, make_dataset",
    [(RidgeCV(), make_regression),
     (RidgeClassifierCV(), make_classification)]
)
@pytest.mark.parametrize("cv", [None, 3])
def test_ridge_best_score(ridge, make_dataset, cv):
    # check that the best_score_ is store
    X, y = make_dataset(n_samples=6, random_state=42)
    ridge.set_params(store_cv_values=False, cv=cv)
    ridge.fit(X, y)
    assert hasattr(ridge, "best_score_")
    assert isinstance(ridge.best_score_, float)


def _test_ridge_diabetes(filter_):
    ridge = Ridge(fit_intercept=False)
    ridge.fit(filter_(X_diabetes), y_diabetes)
    return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5)


def _test_multi_ridge_diabetes(filter_):
    # simulate several responses
    Y = np.vstack((y_diabetes, y_diabetes)).T
    n_features = X_diabetes.shape[1]

    ridge = Ridge(fit_intercept=False)
    ridge.fit(filter_(X_diabetes), Y)
    assert ridge.coef_.shape == (2, n_features)
    Y_pred = ridge.predict(filter_(X_diabetes))
    ridge.fit(filter_(X_diabetes), y_diabetes)
    y_pred = ridge.predict(filter_(X_diabetes))
    assert_array_almost_equal(np.vstack((y_pred, y_pred)).T,
                              Y_pred, decimal=3)


def _test_ridge_classifiers(filter_):
    n_classes = np.unique(y_iris).shape[0]
    n_features = X_iris.shape[1]
    for reg in (RidgeClassifier(), RidgeClassifierCV()):
        reg.fit(filter_(X_iris), y_iris)
        assert reg.coef_.shape == (n_classes, n_features)
        y_pred = reg.predict(filter_(X_iris))
        assert np.mean(y_iris == y_pred) > .79

    cv = KFold(5)
    reg = RidgeClassifierCV(cv=cv)
    reg.fit(filter_(X_iris), y_iris)
    y_pred = reg.predict(filter_(X_iris))
    assert np.mean(y_iris == y_pred) >= 0.8


@pytest.mark.parametrize("scoring", [None, "accuracy", _accuracy_callable])
@pytest.mark.parametrize("cv", [None, KFold(5)])
@pytest.mark.parametrize("filter_", [DENSE_FILTER, SPARSE_FILTER])
def test_ridge_classifier_with_scoring(filter_, scoring, cv):
    # non-regression test for #14672
    # check that RidgeClassifierCV works with all sort of scoring and
    # cross-validation
    scoring_ = make_scorer(scoring) if callable(scoring) else scoring
    clf = RidgeClassifierCV(scoring=scoring_, cv=cv)
    # Smoke test to check that fit/predict does not raise error
    clf.fit(filter_(X_iris), y_iris).predict(filter_(X_iris))


@pytest.mark.parametrize("cv", [None, KFold(5)])
@pytest.mark.parametrize("filter_", [DENSE_FILTER, SPARSE_FILTER])
def test_ridge_regression_custom_scoring(filter_, cv):
    # check that custom scoring is working as expected
    # check the tie breaking strategy (keep the first alpha tried)

    def _dummy_score(y_test, y_pred):
        return 0.42

    alphas = np.logspace(-2, 2, num=5)
    clf = RidgeClassifierCV(
        alphas=alphas, scoring=make_scorer(_dummy_score), cv=cv
    )
    clf.fit(filter_(X_iris), y_iris)
    assert clf.best_score_ == pytest.approx(0.42)
    # In case of tie score, the first alphas will be kept
    assert clf.alpha_ == pytest.approx(alphas[0])


def _test_tolerance(filter_):
    ridge = Ridge(tol=1e-5, fit_intercept=False)
    ridge.fit(filter_(X_diabetes), y_diabetes)
    score = ridge.score(filter_(X_diabetes), y_diabetes)

    ridge2 = Ridge(tol=1e-3, fit_intercept=False)
    ridge2.fit(filter_(X_diabetes), y_diabetes)
    score2 = ridge2.score(filter_(X_diabetes), y_diabetes)

    assert score >= score2


def check_dense_sparse(test_func):
    # test dense matrix
    ret_dense = test_func(DENSE_FILTER)
    # test sparse matrix
    ret_sparse = test_func(SPARSE_FILTER)
    # test that the outputs are the same
    if ret_dense is not None and ret_sparse is not None:
        assert_array_almost_equal(ret_dense, ret_sparse, decimal=3)


@pytest.mark.parametrize(
        'test_func',
        (_test_ridge_loo, _test_ridge_cv, _test_ridge_cv_normalize,
         _test_ridge_diabetes, _test_multi_ridge_diabetes,
         _test_ridge_classifiers, _test_tolerance))
def test_dense_sparse(test_func):
    check_dense_sparse(test_func)


def test_ridge_sparse_svd():
    X = sp.csc_matrix(rng.rand(100, 10))
    y = rng.rand(100)
    ridge = Ridge(solver='svd', fit_intercept=False)
    assert_raises(TypeError, ridge.fit, X, y)


def test_class_weights():
    # Test class weights.
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                  [1.0, 1.0], [1.0, 0.0]])
    y = [1, 1, 1, -1, -1]

    reg = RidgeClassifier(class_weight=None)
    reg.fit(X, y)
    assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([1]))

    # we give a small weights to class 1
    reg = RidgeClassifier(class_weight={1: 0.001})
    reg.fit(X, y)

    # now the hyperplane should rotate clock-wise and
    # the prediction on this point should shift
    assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([-1]))

    # check if class_weight = 'balanced' can handle negative labels.
    reg = RidgeClassifier(class_weight='balanced')
    reg.fit(X, y)
    assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([1]))

    # class_weight = 'balanced', and class_weight = None should return
    # same values when y has equal number of all labels
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]])
    y = [1, 1, -1, -1]
    reg = RidgeClassifier(class_weight=None)
    reg.fit(X, y)
    rega = RidgeClassifier(class_weight='balanced')
    rega.fit(X, y)
    assert len(rega.classes_) == 2
    assert_array_almost_equal(reg.coef_, rega.coef_)
    assert_array_almost_equal(reg.intercept_, rega.intercept_)


@pytest.mark.parametrize('reg', (RidgeClassifier, RidgeClassifierCV))
def test_class_weight_vs_sample_weight(reg):
    """Check class_weights resemble sample_weights behavior."""

    # Iris is balanced, so no effect expected for using 'balanced' weights
    reg1 = reg()
    reg1.fit(iris.data, iris.target)
    reg2 = reg(class_weight='balanced')
    reg2.fit(iris.data, iris.target)
    assert_almost_equal(reg1.coef_, reg2.coef_)

    # Inflate importance of class 1, check against user-defined weights
    sample_weight = np.ones(iris.target.shape)
    sample_weight[iris.target == 1] *= 100
    class_weight = {0: 1., 1: 100., 2: 1.}
    reg1 = reg()
    reg1.fit(iris.data, iris.target, sample_weight)
    reg2 = reg(class_weight=class_weight)
    reg2.fit(iris.data, iris.target)
    assert_almost_equal(reg1.coef_, reg2.coef_)

    # Check that sample_weight and class_weight are multiplicative
    reg1 = reg()
    reg1.fit(iris.data, iris.target, sample_weight ** 2)
    reg2 = reg(class_weight=class_weight)
    reg2.fit(iris.data, iris.target, sample_weight)
    assert_almost_equal(reg1.coef_, reg2.coef_)


def test_class_weights_cv():
    # Test class weights for cross validated ridge classifier.
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                  [1.0, 1.0], [1.0, 0.0]])
    y = [1, 1, 1, -1, -1]

    reg = RidgeClassifierCV(class_weight=None, alphas=[.01, .1, 1])
    reg.fit(X, y)

    # we give a small weights to class 1
    reg = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[.01, .1, 1, 10])
    reg.fit(X, y)

    assert_array_equal(reg.predict([[-.2, 2]]), np.array([-1]))


@pytest.mark.parametrize(
    "scoring", [None, 'neg_mean_squared_error', _mean_squared_error_callable]
)
def test_ridgecv_store_cv_values(scoring):
    rng = np.random.RandomState(42)

    n_samples = 8
    n_features = 5
    x = rng.randn(n_samples, n_features)
    alphas = [1e-1, 1e0, 1e1]
    n_alphas = len(alphas)

    scoring_ = make_scorer(scoring) if callable(scoring) else scoring

    r = RidgeCV(alphas=alphas, cv=None, store_cv_values=True, scoring=scoring_)

    # with len(y.shape) == 1
    y = rng.randn(n_samples)
    r.fit(x, y)
    assert r.cv_values_.shape == (n_samples, n_alphas)

    # with len(y.shape) == 2
    n_targets = 3
    y = rng.randn(n_samples, n_targets)
    r.fit(x, y)
    assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)

    r = RidgeCV(cv=3, store_cv_values=True, scoring=scoring)
    assert_raises_regex(ValueError, 'cv!=None and store_cv_values',
                        r.fit, x, y)


@pytest.mark.parametrize("scoring", [None, 'accuracy', _accuracy_callable])
def test_ridge_classifier_cv_store_cv_values(scoring):
    x = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                  [1.0, 1.0], [1.0, 0.0]])
    y = np.array([1, 1, 1, -1, -1])

    n_samples = x.shape[0]
    alphas = [1e-1, 1e0, 1e1]
    n_alphas = len(alphas)

    scoring_ = make_scorer(scoring) if callable(scoring) else scoring

    r = RidgeClassifierCV(
        alphas=alphas, cv=None, store_cv_values=True, scoring=scoring_
    )

    # with len(y.shape) == 1
    n_targets = 1
    r.fit(x, y)
    assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)

    # with len(y.shape) == 2
    y = np.array([[1, 1, 1, -1, -1],
                  [1, -1, 1, -1, 1],
                  [-1, -1, 1, -1, -1]]).transpose()
    n_targets = y.shape[1]
    r.fit(x, y)
    assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)


def test_ridgecv_sample_weight():
    rng = np.random.RandomState(0)
    alphas = (0.1, 1.0, 10.0)

    # There are different algorithms for n_samples > n_features
    # and the opposite, so test them both.
    for n_samples, n_features in ((6, 5), (5, 10)):
        y = rng.randn(n_samples)
        X = rng.randn(n_samples, n_features)
        sample_weight = 1.0 + rng.rand(n_samples)

        cv = KFold(5)
        ridgecv = RidgeCV(alphas=alphas, cv=cv)
        ridgecv.fit(X, y, sample_weight=sample_weight)

        # Check using GridSearchCV directly
        parameters = {'alpha': alphas}
        gs = GridSearchCV(Ridge(), parameters, cv=cv)
        gs.fit(X, y, sample_weight=sample_weight)

        assert ridgecv.alpha_ == gs.best_estimator_.alpha
        assert_array_almost_equal(ridgecv.coef_, gs.best_estimator_.coef_)


def test_raises_value_error_if_sample_weights_greater_than_1d():
    # Sample weights must be either scalar or 1D

    n_sampless = [2, 3]
    n_featuress = [3, 2]

    rng = np.random.RandomState(42)

    for n_samples, n_features in zip(n_sampless, n_featuress):
        X = rng.randn(n_samples, n_features)
        y = rng.randn(n_samples)
        sample_weights_OK = rng.randn(n_samples) ** 2 + 1
        sample_weights_OK_1 = 1.
        sample_weights_OK_2 = 2.
        sample_weights_not_OK = sample_weights_OK[:, np.newaxis]
        sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :]

        ridge = Ridge(alpha=1)

        # make sure the "OK" sample weights actually work
        ridge.fit(X, y, sample_weights_OK)
        ridge.fit(X, y, sample_weights_OK_1)
        ridge.fit(X, y, sample_weights_OK_2)

        def fit_ridge_not_ok():
            ridge.fit(X, y, sample_weights_not_OK)

        def fit_ridge_not_ok_2():
            ridge.fit(X, y, sample_weights_not_OK_2)

        assert_raise_message(ValueError,
                             "Sample weights must be 1D array or scalar",
                             fit_ridge_not_ok)

        assert_raise_message(ValueError,
                             "Sample weights must be 1D array or scalar",
                             fit_ridge_not_ok_2)


def test_sparse_design_with_sample_weights():
    # Sample weights must work with sparse matrices

    n_sampless = [2, 3]
    n_featuress = [3, 2]

    rng = np.random.RandomState(42)

    sparse_matrix_converters = [sp.coo_matrix,
                                sp.csr_matrix,
                                sp.csc_matrix,
                                sp.lil_matrix,
                                sp.dok_matrix
                                ]

    sparse_ridge = Ridge(alpha=1., fit_intercept=False)
    dense_ridge = Ridge(alpha=1., fit_intercept=False)

    for n_samples, n_features in zip(n_sampless, n_featuress):
        X = rng.randn(n_samples, n_features)
        y = rng.randn(n_samples)
        sample_weights = rng.randn(n_samples) ** 2 + 1
        for sparse_converter in sparse_matrix_converters:
            X_sparse = sparse_converter(X)
            sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights)
            dense_ridge.fit(X, y, sample_weight=sample_weights)

            assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_,
                                      decimal=6)


def test_ridgecv_int_alphas():
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                  [1.0, 1.0], [1.0, 0.0]])
    y = [1, 1, 1, -1, -1]

    # Integers
    ridge = RidgeCV(alphas=(1, 10, 100))
    ridge.fit(X, y)


def test_ridgecv_negative_alphas():
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                  [1.0, 1.0], [1.0, 0.0]])
    y = [1, 1, 1, -1, -1]

    # Negative integers
    ridge = RidgeCV(alphas=(-1, -10, -100))
    assert_raises_regex(ValueError,
                        "alphas must be positive",
                        ridge.fit, X, y)

    # Negative floats
    ridge = RidgeCV(alphas=(-0.1, -1.0, -10.0))
    assert_raises_regex(ValueError,
                        "alphas must be positive",
                        ridge.fit, X, y)


def test_raises_value_error_if_solver_not_supported():
    # Tests whether a ValueError is raised if a non-identified solver
    # is passed to ridge_regression

    wrong_solver = "This is not a solver (MagritteSolveCV QuantumBitcoin)"

    exception = ValueError
    message = ("Known solvers are 'sparse_cg', 'cholesky', 'svd'"
               " 'lsqr', 'sag' or 'saga'. Got %s." % wrong_solver)

    def func():
        X = np.eye(3)
        y = np.ones(3)
        ridge_regression(X, y, alpha=1., solver=wrong_solver)

    assert_raise_message(exception, message, func)


def test_sparse_cg_max_iter():
    reg = Ridge(solver="sparse_cg", max_iter=1)
    reg.fit(X_diabetes, y_diabetes)
    assert reg.coef_.shape[0] == X_diabetes.shape[1]


@ignore_warnings
def test_n_iter():
    # Test that self.n_iter_ is correct.
    n_targets = 2
    X, y = X_diabetes, y_diabetes
    y_n = np.tile(y, (n_targets, 1)).T

    for max_iter in range(1, 4):
        for solver in ('sag', 'saga', 'lsqr'):
            reg = Ridge(solver=solver, max_iter=max_iter, tol=1e-12)
            reg.fit(X, y_n)
            assert_array_equal(reg.n_iter_, np.tile(max_iter, n_targets))

    for solver in ('sparse_cg', 'svd', 'cholesky'):
        reg = Ridge(solver=solver, max_iter=1, tol=1e-1)
        reg.fit(X, y_n)
        assert reg.n_iter_ is None


@pytest.mark.parametrize('solver', ['sparse_cg', 'auto'])
def test_ridge_fit_intercept_sparse(solver):
    X, y = _make_sparse_offset_regression(n_features=20, random_state=0)
    X_csr = sp.csr_matrix(X)

    # for now only sparse_cg can correctly fit an intercept with sparse X with
    # default tol and max_iter.
    # sag is tested separately in test_ridge_fit_intercept_sparse_sag
    # because it requires more iterations and should raise a warning if default
    # max_iter is used.
    # other solvers raise an exception, as checked in
    # test_ridge_fit_intercept_sparse_error
    #
    # "auto" should switch to "sparse_cg" when X is sparse
    # so the reference we use for both ("auto" and "sparse_cg") is
    # Ridge(solver="sparse_cg"), fitted using the dense representation (note
    # that "sparse_cg" can fit sparse or dense data)
    dense_ridge = Ridge(solver='sparse_cg')
    sparse_ridge = Ridge(solver=solver)
    dense_ridge.fit(X, y)
    with pytest.warns(None) as record:
        sparse_ridge.fit(X_csr, y)
    assert len(record) == 0
    assert np.allclose(dense_ridge.intercept_, sparse_ridge.intercept_)
    assert np.allclose(dense_ridge.coef_, sparse_ridge.coef_)


@pytest.mark.parametrize('solver', ['saga', 'lsqr', 'svd', 'cholesky'])
def test_ridge_fit_intercept_sparse_error(solver):
    X, y = _make_sparse_offset_regression(n_features=20, random_state=0)
    X_csr = sp.csr_matrix(X)
    sparse_ridge = Ridge(solver=solver)
    err_msg = "solver='{}' does not support".format(solver)
    with pytest.raises(ValueError, match=err_msg):
        sparse_ridge.fit(X_csr, y)


def test_ridge_fit_intercept_sparse_sag():
    X, y = _make_sparse_offset_regression(
        n_features=5, n_samples=20, random_state=0, X_offset=5.)
    X_csr = sp.csr_matrix(X)

    params = dict(alpha=1., solver='sag', fit_intercept=True,
                  tol=1e-10, max_iter=100000)
    dense_ridge = Ridge(**params)
    sparse_ridge = Ridge(**params)
    dense_ridge.fit(X, y)
    with pytest.warns(None) as record:
        sparse_ridge.fit(X_csr, y)
    assert len(record) == 0
    assert np.allclose(dense_ridge.intercept_, sparse_ridge.intercept_,
                       rtol=1e-4)
    assert np.allclose(dense_ridge.coef_, sparse_ridge.coef_, rtol=1e-4)
    with pytest.warns(UserWarning, match='"sag" solver requires.*'):
        Ridge(solver='sag').fit(X_csr, y)


@pytest.mark.parametrize('return_intercept', [False, True])
@pytest.mark.parametrize('sample_weight', [None, np.ones(1000)])
@pytest.mark.parametrize('arr_type', [np.array, sp.csr_matrix])
@pytest.mark.parametrize('solver', ['auto', 'sparse_cg', 'cholesky', 'lsqr',
                                    'sag', 'saga'])
def test_ridge_regression_check_arguments_validity(return_intercept,
                                                   sample_weight, arr_type,
                                                   solver):
    """check if all combinations of arguments give valid estimations"""

    # test excludes 'svd' solver because it raises exception for sparse inputs

    rng = check_random_state(42)
    X = rng.rand(1000, 3)
    true_coefs = [1, 2, 0.1]
    y = np.dot(X, true_coefs)
    true_intercept = 0.
    if return_intercept:
        true_intercept = 10000.
    y += true_intercept
    X_testing = arr_type(X)

    alpha, atol, tol = 1e-3, 1e-4, 1e-6

    if solver not in ['sag', 'auto'] and return_intercept:
        assert_raises_regex(ValueError,
                            "In Ridge, only 'sag' solver",
                            ridge_regression, X_testing, y,
                            alpha=alpha,
                            solver=solver,
                            sample_weight=sample_weight,
                            return_intercept=return_intercept,
                            tol=tol)
        return

    out = ridge_regression(X_testing, y, alpha=alpha,
                           solver=solver,
                           sample_weight=sample_weight,
                           return_intercept=return_intercept,
                           tol=tol,
                           )

    if return_intercept:
        coef, intercept = out
        assert_allclose(coef, true_coefs, rtol=0, atol=atol)
        assert_allclose(intercept, true_intercept, rtol=0, atol=atol)
    else:
        assert_allclose(out, true_coefs, rtol=0, atol=atol)


def test_ridge_classifier_no_support_multilabel():
    X, y = make_multilabel_classification(n_samples=10, random_state=0)
    assert_raises(ValueError, RidgeClassifier().fit, X, y)


@pytest.mark.parametrize(
    "solver", ["svd", "sparse_cg", "cholesky", "lsqr", "sag", "saga"])
def test_dtype_match(solver):
    rng = np.random.RandomState(0)
    alpha = 1.0

    n_samples, n_features = 6, 5
    X_64 = rng.randn(n_samples, n_features)
    y_64 = rng.randn(n_samples)
    X_32 = X_64.astype(np.float32)
    y_32 = y_64.astype(np.float32)

    tol = 2 * np.finfo(np.float32).resolution
    # Check type consistency 32bits
    ridge_32 = Ridge(alpha=alpha, solver=solver, max_iter=500, tol=tol)
    ridge_32.fit(X_32, y_32)
    coef_32 = ridge_32.coef_

    # Check type consistency 64 bits
    ridge_64 = Ridge(alpha=alpha, solver=solver, max_iter=500, tol=tol)
    ridge_64.fit(X_64, y_64)
    coef_64 = ridge_64.coef_

    # Do the actual checks at once for easier debug
    assert coef_32.dtype == X_32.dtype
    assert coef_64.dtype == X_64.dtype
    assert ridge_32.predict(X_32).dtype == X_32.dtype
    assert ridge_64.predict(X_64).dtype == X_64.dtype
    assert_allclose(ridge_32.coef_, ridge_64.coef_, rtol=1e-4, atol=5e-4)


def test_dtype_match_cholesky():
    # Test different alphas in cholesky solver to ensure full coverage.
    # This test is separated from test_dtype_match for clarity.
    rng = np.random.RandomState(0)
    alpha = (1.0, 0.5)

    n_samples, n_features, n_target = 6, 7, 2
    X_64 = rng.randn(n_samples, n_features)
    y_64 = rng.randn(n_samples, n_target)
    X_32 = X_64.astype(np.float32)
    y_32 = y_64.astype(np.float32)

    # Check type consistency 32bits
    ridge_32 = Ridge(alpha=alpha, solver='cholesky')
    ridge_32.fit(X_32, y_32)
    coef_32 = ridge_32.coef_

    # Check type consistency 64 bits
    ridge_64 = Ridge(alpha=alpha, solver='cholesky')
    ridge_64.fit(X_64, y_64)
    coef_64 = ridge_64.coef_

    # Do all the checks at once, like this is easier to debug
    assert coef_32.dtype == X_32.dtype
    assert coef_64.dtype == X_64.dtype
    assert ridge_32.predict(X_32).dtype == X_32.dtype
    assert ridge_64.predict(X_64).dtype == X_64.dtype
    assert_almost_equal(ridge_32.coef_, ridge_64.coef_, decimal=5)


@pytest.mark.parametrize(
    'solver', ['svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'])
@pytest.mark.parametrize('seed', range(1))
def test_ridge_regression_dtype_stability(solver, seed):
    random_state = np.random.RandomState(seed)
    n_samples, n_features = 6, 5
    X = random_state.randn(n_samples, n_features)
    coef = random_state.randn(n_features)
    y = np.dot(X, coef) + 0.01 * random_state.randn(n_samples)
    alpha = 1.0
    results = dict()
    # XXX: Sparse CG seems to be far less numerically stable than the
    # others, maybe we should not enable float32 for this one.
    atol = 1e-3 if solver == "sparse_cg" else 1e-5
    for current_dtype in (np.float32, np.float64):
        results[current_dtype] = ridge_regression(X.astype(current_dtype),
                                                  y.astype(current_dtype),
                                                  alpha=alpha,
                                                  solver=solver,
                                                  random_state=random_state,
                                                  sample_weight=None,
                                                  max_iter=500,
                                                  tol=1e-10,
                                                  return_n_iter=False,
                                                  return_intercept=False)

    assert results[np.float32].dtype == np.float32
    assert results[np.float64].dtype == np.float64
    assert_allclose(results[np.float32], results[np.float64], atol=atol)


def test_ridge_sag_with_X_fortran():
    # check that Fortran array are converted when using SAG solver
    X, y = make_regression(random_state=42)
    # for the order of X and y to not be C-ordered arrays
    X = np.asfortranarray(X)
    X = X[::2, :]
    y = y[::2]
    Ridge(solver='sag').fit(X, y)