File: precision_recall_curve.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (181 lines) | stat: -rw-r--r-- 6,204 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from .base import _check_classifer_response_method

from .. import average_precision_score
from .. import precision_recall_curve

from ...utils import check_matplotlib_support
from ...utils.validation import _deprecate_positional_args
from ...base import is_classifier


class PrecisionRecallDisplay:
    """Precision Recall visualization.

    It is recommend to use :func:`~sklearn.metrics.plot_precision_recall_curve`
    to create a visualizer. All parameters are stored as attributes.

    Read more in the :ref:`User Guide <visualizations>`.

    Parameters
    -----------
    precision : ndarray
        Precision values.

    recall : ndarray
        Recall values.

    average_precision : float, default=None
        Average precision. If None, the average precision is not shown.

    estimator_name : str, default=None
        Name of estimator. If None, then the estimator name is not shown.

    Attributes
    ----------
    line_ : matplotlib Artist
        Precision recall curve.

    ax_ : matplotlib Axes
        Axes with precision recall curve.

    figure_ : matplotlib Figure
        Figure containing the curve.
    """
    def __init__(self, precision, recall, *,
                 average_precision=None, estimator_name=None):
        self.precision = precision
        self.recall = recall
        self.average_precision = average_precision
        self.estimator_name = estimator_name

    @_deprecate_positional_args
    def plot(self, ax=None, *, name=None, **kwargs):
        """Plot visualization.

        Extra keyword arguments will be passed to matplotlib's `plot`.

        Parameters
        ----------
        ax : Matplotlib Axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        name : str, default=None
            Name of precision recall curve for labeling. If `None`, use the
            name of the estimator.

        **kwargs : dict
            Keyword arguments to be passed to matplotlib's `plot`.

        Returns
        -------
        display : :class:`~sklearn.metrics.PrecisionRecallDisplay`
            Object that stores computed values.
        """
        check_matplotlib_support("PrecisionRecallDisplay.plot")
        import matplotlib.pyplot as plt

        if ax is None:
            fig, ax = plt.subplots()

        name = self.estimator_name if name is None else name

        line_kwargs = {"drawstyle": "steps-post"}
        if self.average_precision is not None and name is not None:
            line_kwargs["label"] = (f"{name} (AP = "
                                    f"{self.average_precision:0.2f})")
        elif self.average_precision is not None:
            line_kwargs["label"] = (f"AP = "
                                    f"{self.average_precision:0.2f}")
        elif name is not None:
            line_kwargs["label"] = name
        line_kwargs.update(**kwargs)

        self.line_, = ax.plot(self.recall, self.precision, **line_kwargs)
        ax.set(xlabel="Recall", ylabel="Precision")

        if "label" in line_kwargs:
            ax.legend(loc='lower left')

        self.ax_ = ax
        self.figure_ = ax.figure
        return self


@_deprecate_positional_args
def plot_precision_recall_curve(estimator, X, y, *,
                                sample_weight=None, response_method="auto",
                                name=None, ax=None, **kwargs):
    """Plot Precision Recall Curve for binary classifiers.

    Extra keyword arguments will be passed to matplotlib's `plot`.

    Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.

    Parameters
    ----------
    estimator : estimator instance
        Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
        in which the last estimator is a classifier.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Input values.

    y : array-like of shape (n_samples,)
        Binary target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    response_method : {'predict_proba', 'decision_function', 'auto'}, \
                      default='auto'
        Specifies whether to use :term:`predict_proba` or
        :term:`decision_function` as the target response. If set to 'auto',
        :term:`predict_proba` is tried first and if it does not exist
        :term:`decision_function` is tried next.

    name : str, default=None
        Name for labeling curve. If `None`, the name of the
        estimator is used.

    ax : matplotlib axes, default=None
        Axes object to plot on. If `None`, a new figure and axes is created.

    **kwargs : dict
        Keyword arguments to be passed to matplotlib's `plot`.

    Returns
    -------
    display : :class:`~sklearn.metrics.PrecisionRecallDisplay`
        Object that stores computed values.
    """
    check_matplotlib_support("plot_precision_recall_curve")

    classification_error = ("{} should be a binary classifier".format(
        estimator.__class__.__name__))
    if not is_classifier(estimator):
        raise ValueError(classification_error)

    prediction_method = _check_classifer_response_method(estimator,
                                                         response_method)
    y_pred = prediction_method(X)

    if y_pred.ndim != 1:
        if y_pred.shape[1] != 2:
            raise ValueError(classification_error)
        else:
            y_pred = y_pred[:, 1]

    pos_label = estimator.classes_[1]
    precision, recall, _ = precision_recall_curve(y, y_pred,
                                                  pos_label=pos_label,
                                                  sample_weight=sample_weight)
    average_precision = average_precision_score(y, y_pred,
                                                pos_label=pos_label,
                                                sample_weight=sample_weight)
    name = name if name is not None else estimator.__class__.__name__
    viz = PrecisionRecallDisplay(
        precision=precision, recall=recall,
        average_precision=average_precision, estimator_name=name
    )
    return viz.plot(ax=ax, name=name, **kwargs)