File: test_plot_confusion_matrix.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (299 lines) | stat: -rw-r--r-- 10,898 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import pytest
import numpy as np
from numpy.testing import assert_allclose
from numpy.testing import assert_array_equal

from sklearn.compose import make_column_transformer
from sklearn.datasets import make_classification
from sklearn.exceptions import NotFittedError
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC, SVR

from sklearn.metrics import confusion_matrix
from sklearn.metrics import plot_confusion_matrix
from sklearn.metrics import ConfusionMatrixDisplay


# TODO: Remove when https://github.com/numpy/numpy/issues/14397 is resolved
pytestmark = pytest.mark.filterwarnings(
    "ignore:In future, it will be an error for 'np.bool_':DeprecationWarning:"
    "matplotlib.*")


@pytest.fixture(scope="module")
def n_classes():
    return 5


@pytest.fixture(scope="module")
def data(n_classes):
    X, y = make_classification(n_samples=100, n_informative=5,
                               n_classes=n_classes, random_state=0)
    return X, y


@pytest.fixture(scope="module")
def fitted_clf(data):
    return SVC(kernel='linear', C=0.01).fit(*data)


@pytest.fixture(scope="module")
def y_pred(data, fitted_clf):
    X, _ = data
    return fitted_clf.predict(X)


def test_error_on_regressor(pyplot, data):
    X, y = data
    est = SVR().fit(X, y)

    msg = "plot_confusion_matrix only supports classifiers"
    with pytest.raises(ValueError, match=msg):
        plot_confusion_matrix(est, X, y)


def test_error_on_invalid_option(pyplot, fitted_clf, data):
    X, y = data
    msg = (r"normalize must be one of \{'true', 'pred', 'all', "
           r"None\}")

    with pytest.raises(ValueError, match=msg):
        plot_confusion_matrix(fitted_clf, X, y, normalize='invalid')


@pytest.mark.parametrize("with_labels", [True, False])
@pytest.mark.parametrize("with_display_labels", [True, False])
def test_plot_confusion_matrix_custom_labels(pyplot, data, y_pred, fitted_clf,
                                             n_classes, with_labels,
                                             with_display_labels):
    X, y = data
    ax = pyplot.gca()
    labels = [2, 1, 0, 3, 4] if with_labels else None
    display_labels = ['b', 'd', 'a', 'e', 'f'] if with_display_labels else None

    cm = confusion_matrix(y, y_pred, labels=labels)
    disp = plot_confusion_matrix(fitted_clf, X, y,
                                 ax=ax, display_labels=display_labels,
                                 labels=labels)

    assert_allclose(disp.confusion_matrix, cm)

    if with_display_labels:
        expected_display_labels = display_labels
    elif with_labels:
        expected_display_labels = labels
    else:
        expected_display_labels = list(range(n_classes))

    expected_display_labels_str = [str(name)
                                   for name in expected_display_labels]

    x_ticks = [tick.get_text() for tick in disp.ax_.get_xticklabels()]
    y_ticks = [tick.get_text() for tick in disp.ax_.get_yticklabels()]

    assert_array_equal(disp.display_labels, expected_display_labels)
    assert_array_equal(x_ticks, expected_display_labels_str)
    assert_array_equal(y_ticks, expected_display_labels_str)


@pytest.mark.parametrize("normalize", ['true', 'pred', 'all', None])
@pytest.mark.parametrize("include_values", [True, False])
def test_plot_confusion_matrix(pyplot, data, y_pred, n_classes, fitted_clf,
                               normalize, include_values):
    X, y = data
    ax = pyplot.gca()
    cmap = 'plasma'
    cm = confusion_matrix(y, y_pred)
    disp = plot_confusion_matrix(fitted_clf, X, y,
                                 normalize=normalize,
                                 cmap=cmap, ax=ax,
                                 include_values=include_values)

    assert disp.ax_ == ax

    if normalize == 'true':
        cm = cm / cm.sum(axis=1, keepdims=True)
    elif normalize == 'pred':
        cm = cm / cm.sum(axis=0, keepdims=True)
    elif normalize == 'all':
        cm = cm / cm.sum()

    assert_allclose(disp.confusion_matrix, cm)
    import matplotlib as mpl
    assert isinstance(disp.im_, mpl.image.AxesImage)
    assert disp.im_.get_cmap().name == cmap
    assert isinstance(disp.ax_, pyplot.Axes)
    assert isinstance(disp.figure_, pyplot.Figure)

    assert disp.ax_.get_ylabel() == "True label"
    assert disp.ax_.get_xlabel() == "Predicted label"

    x_ticks = [tick.get_text() for tick in disp.ax_.get_xticklabels()]
    y_ticks = [tick.get_text() for tick in disp.ax_.get_yticklabels()]

    expected_display_labels = list(range(n_classes))

    expected_display_labels_str = [str(name)
                                   for name in expected_display_labels]

    assert_array_equal(disp.display_labels, expected_display_labels)
    assert_array_equal(x_ticks, expected_display_labels_str)
    assert_array_equal(y_ticks, expected_display_labels_str)

    image_data = disp.im_.get_array().data
    assert_allclose(image_data, cm)

    if include_values:
        assert disp.text_.shape == (n_classes, n_classes)
        fmt = '.2g'
        expected_text = np.array([format(v, fmt) for v in cm.ravel(order="C")])
        text_text = np.array([
            t.get_text() for t in disp.text_.ravel(order="C")])
        assert_array_equal(expected_text, text_text)
    else:
        assert disp.text_ is None


def test_confusion_matrix_display(pyplot, data, fitted_clf, y_pred, n_classes):
    X, y = data

    cm = confusion_matrix(y, y_pred)
    disp = plot_confusion_matrix(fitted_clf, X, y, normalize=None,
                                 include_values=True, cmap='viridis',
                                 xticks_rotation=45.0)

    assert_allclose(disp.confusion_matrix, cm)
    assert disp.text_.shape == (n_classes, n_classes)

    rotations = [tick.get_rotation() for tick in disp.ax_.get_xticklabels()]
    assert_allclose(rotations, 45.0)

    image_data = disp.im_.get_array().data
    assert_allclose(image_data, cm)

    disp.plot(cmap='plasma')
    assert disp.im_.get_cmap().name == 'plasma'

    disp.plot(include_values=False)
    assert disp.text_ is None

    disp.plot(xticks_rotation=90.0)
    rotations = [tick.get_rotation() for tick in disp.ax_.get_xticklabels()]
    assert_allclose(rotations, 90.0)

    disp.plot(values_format='e')
    expected_text = np.array([format(v, 'e') for v in cm.ravel(order="C")])
    text_text = np.array([
        t.get_text() for t in disp.text_.ravel(order="C")])
    assert_array_equal(expected_text, text_text)


def test_confusion_matrix_contrast(pyplot):
    # make sure text color is appropriate depending on background

    cm = np.eye(2) / 2
    disp = ConfusionMatrixDisplay(cm, display_labels=[0, 1])

    disp.plot(cmap=pyplot.cm.gray)
    # diagonal text is black
    assert_allclose(disp.text_[0, 0].get_color(), [0.0, 0.0, 0.0, 1.0])
    assert_allclose(disp.text_[1, 1].get_color(), [0.0, 0.0, 0.0, 1.0])

    # off-diagonal text is white
    assert_allclose(disp.text_[0, 1].get_color(), [1.0, 1.0, 1.0, 1.0])
    assert_allclose(disp.text_[1, 0].get_color(), [1.0, 1.0, 1.0, 1.0])

    disp.plot(cmap=pyplot.cm.gray_r)
    # diagonal text is white
    assert_allclose(disp.text_[0, 1].get_color(), [0.0, 0.0, 0.0, 1.0])
    assert_allclose(disp.text_[1, 0].get_color(), [0.0, 0.0, 0.0, 1.0])

    # off-diagonal text is black
    assert_allclose(disp.text_[0, 0].get_color(), [1.0, 1.0, 1.0, 1.0])
    assert_allclose(disp.text_[1, 1].get_color(), [1.0, 1.0, 1.0, 1.0])

    # Regression test for #15920
    cm = np.array([[19, 34], [32, 58]])
    disp = ConfusionMatrixDisplay(cm, display_labels=[0, 1])

    disp.plot(cmap=pyplot.cm.Blues)
    min_color = pyplot.cm.Blues(0)
    max_color = pyplot.cm.Blues(255)
    assert_allclose(disp.text_[0, 0].get_color(), max_color)
    assert_allclose(disp.text_[0, 1].get_color(), max_color)
    assert_allclose(disp.text_[1, 0].get_color(), max_color)
    assert_allclose(disp.text_[1, 1].get_color(), min_color)


@pytest.mark.parametrize(
    "clf", [LogisticRegression(),
            make_pipeline(StandardScaler(), LogisticRegression()),
            make_pipeline(make_column_transformer((StandardScaler(), [0, 1])),
                          LogisticRegression())])
def test_confusion_matrix_pipeline(pyplot, clf, data, n_classes):
    X, y = data
    with pytest.raises(NotFittedError):
        plot_confusion_matrix(clf, X, y)
    clf.fit(X, y)
    y_pred = clf.predict(X)

    disp = plot_confusion_matrix(clf, X, y)
    cm = confusion_matrix(y, y_pred)

    assert_allclose(disp.confusion_matrix, cm)
    assert disp.text_.shape == (n_classes, n_classes)


@pytest.mark.parametrize("values_format", ['e', 'n'])
def test_confusion_matrix_text_format(pyplot, data, y_pred, n_classes,
                                      fitted_clf, values_format):
    # Make sure plot text is formatted with 'values_format'.
    X, y = data
    cm = confusion_matrix(y, y_pred)
    disp = plot_confusion_matrix(fitted_clf, X, y,
                                 include_values=True,
                                 values_format=values_format)

    assert disp.text_.shape == (n_classes, n_classes)

    expected_text = np.array([format(v, values_format)
                              for v in cm.ravel()])
    text_text = np.array([
        t.get_text() for t in disp.text_.ravel()])
    assert_array_equal(expected_text, text_text)


def test_confusion_matrix_standard_format(pyplot):
    cm = np.array([[10000000, 0], [123456, 12345678]])
    plotted_text = ConfusionMatrixDisplay(
        cm, display_labels=[False, True]).plot().text_
    # Values should be shown as whole numbers 'd',
    # except the first number which should be shown as 1e+07 (longer length)
    # and the last number will be shown as 1.2e+07 (longer length)
    test = [t.get_text() for t in plotted_text.ravel()]
    assert test == ['1e+07', '0', '123456', '1.2e+07']

    cm = np.array([[0.1, 10], [100, 0.525]])
    plotted_text = ConfusionMatrixDisplay(
        cm, display_labels=[False, True]).plot().text_
    # Values should now formatted as '.2g', since there's a float in
    # Values are have two dec places max, (e.g 100 becomes 1e+02)
    test = [t.get_text() for t in plotted_text.ravel()]
    assert test == ['0.1', '10', '1e+02', '0.53']


@pytest.mark.parametrize("display_labels, expected_labels", [
    (None, ["0", "1"]),
    (["cat", "dog"], ["cat", "dog"]),
])
def test_default_labels(pyplot, display_labels, expected_labels):
    cm = np.array([[10, 0], [12, 120]])
    disp = ConfusionMatrixDisplay(cm, display_labels=display_labels).plot()

    x_ticks = [tick.get_text() for tick in disp.ax_.get_xticklabels()]
    y_ticks = [tick.get_text() for tick in disp.ax_.get_yticklabels()]

    assert_array_equal(x_ticks, expected_labels)
    assert_array_equal(y_ticks, expected_labels)