1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
import pytest
import numpy as np
from numpy.testing import assert_allclose
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.metrics import plot_precision_recall_curve
from sklearn.metrics import PrecisionRecallDisplay
from sklearn.metrics import average_precision_score
from sklearn.metrics import precision_recall_curve
from sklearn.datasets import make_classification
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.linear_model import LogisticRegression
from sklearn.exceptions import NotFittedError
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.compose import make_column_transformer
# TODO: Remove when https://github.com/numpy/numpy/issues/14397 is resolved
pytestmark = pytest.mark.filterwarnings(
"ignore:In future, it will be an error for 'np.bool_':DeprecationWarning:"
"matplotlib.*")
def test_errors(pyplot):
X, y_multiclass = make_classification(n_classes=3, n_samples=50,
n_informative=3,
random_state=0)
y_binary = y_multiclass == 0
# Unfitted classifer
binary_clf = DecisionTreeClassifier()
with pytest.raises(NotFittedError):
plot_precision_recall_curve(binary_clf, X, y_binary)
binary_clf.fit(X, y_binary)
multi_clf = DecisionTreeClassifier().fit(X, y_multiclass)
# Fitted multiclass classifier with binary data
msg = "DecisionTreeClassifier should be a binary classifier"
with pytest.raises(ValueError, match=msg):
plot_precision_recall_curve(multi_clf, X, y_binary)
reg = DecisionTreeRegressor().fit(X, y_multiclass)
msg = "DecisionTreeRegressor should be a binary classifier"
with pytest.raises(ValueError, match=msg):
plot_precision_recall_curve(reg, X, y_binary)
@pytest.mark.parametrize(
"response_method, msg",
[("predict_proba", "response method predict_proba is not defined in "
"MyClassifier"),
("decision_function", "response method decision_function is not defined "
"in MyClassifier"),
("auto", "response method decision_function or predict_proba is not "
"defined in MyClassifier"),
("bad_method", "response_method must be 'predict_proba', "
"'decision_function' or 'auto'")])
def test_error_bad_response(pyplot, response_method, msg):
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
class MyClassifier(BaseEstimator, ClassifierMixin):
def fit(self, X, y):
self.fitted_ = True
self.classes_ = [0, 1]
return self
clf = MyClassifier().fit(X, y)
with pytest.raises(ValueError, match=msg):
plot_precision_recall_curve(clf, X, y, response_method=response_method)
@pytest.mark.parametrize("response_method",
["predict_proba", "decision_function"])
@pytest.mark.parametrize("with_sample_weight", [True, False])
def test_plot_precision_recall(pyplot, response_method, with_sample_weight):
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
lr = LogisticRegression().fit(X, y)
if with_sample_weight:
rng = np.random.RandomState(42)
sample_weight = rng.randint(0, 4, size=X.shape[0])
else:
sample_weight = None
disp = plot_precision_recall_curve(lr, X, y, alpha=0.8,
response_method=response_method,
sample_weight=sample_weight)
y_score = getattr(lr, response_method)(X)
if response_method == 'predict_proba':
y_score = y_score[:, 1]
prec, recall, _ = precision_recall_curve(y, y_score,
sample_weight=sample_weight)
avg_prec = average_precision_score(y, y_score, sample_weight=sample_weight)
assert_allclose(disp.precision, prec)
assert_allclose(disp.recall, recall)
assert disp.average_precision == pytest.approx(avg_prec)
assert disp.estimator_name == "LogisticRegression"
# cannot fail thanks to pyplot fixture
import matplotlib as mpl # noqa
assert isinstance(disp.line_, mpl.lines.Line2D)
assert disp.line_.get_alpha() == 0.8
assert isinstance(disp.ax_, mpl.axes.Axes)
assert isinstance(disp.figure_, mpl.figure.Figure)
expected_label = "LogisticRegression (AP = {:0.2f})".format(avg_prec)
assert disp.line_.get_label() == expected_label
assert disp.ax_.get_xlabel() == "Recall"
assert disp.ax_.get_ylabel() == "Precision"
# draw again with another label
disp.plot(name="MySpecialEstimator")
expected_label = "MySpecialEstimator (AP = {:0.2f})".format(avg_prec)
assert disp.line_.get_label() == expected_label
@pytest.mark.parametrize(
"clf", [make_pipeline(StandardScaler(), LogisticRegression()),
make_pipeline(make_column_transformer((StandardScaler(), [0, 1])),
LogisticRegression())])
def test_precision_recall_curve_pipeline(pyplot, clf):
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
with pytest.raises(NotFittedError):
plot_precision_recall_curve(clf, X, y)
clf.fit(X, y)
disp = plot_precision_recall_curve(clf, X, y)
assert disp.estimator_name == clf.__class__.__name__
def test_precision_recall_curve_string_labels(pyplot):
# regression test #15738
cancer = load_breast_cancer()
X = cancer.data
y = cancer.target_names[cancer.target]
lr = make_pipeline(StandardScaler(), LogisticRegression())
lr.fit(X, y)
for klass in cancer.target_names:
assert klass in lr.classes_
disp = plot_precision_recall_curve(lr, X, y)
y_pred = lr.predict_proba(X)[:, 1]
avg_prec = average_precision_score(y, y_pred,
pos_label=lr.classes_[1])
assert disp.average_precision == pytest.approx(avg_prec)
assert disp.estimator_name == lr.__class__.__name__
def test_plot_precision_recall_curve_estimator_name_multiple_calls(pyplot):
# non-regression test checking that the `name` used when calling
# `plot_roc_curve` is used as well when calling `disp.plot()`
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
clf_name = "my hand-crafted name"
clf = LogisticRegression().fit(X, y)
disp = plot_precision_recall_curve(clf, X, y, name=clf_name)
assert disp.estimator_name == clf_name
pyplot.close("all")
disp.plot()
assert clf_name in disp.line_.get_label()
pyplot.close("all")
clf_name = "another_name"
disp.plot(name=clf_name)
assert clf_name in disp.line_.get_label()
@pytest.mark.parametrize(
"average_precision, estimator_name, expected_label",
[
(0.9, None, "AP = 0.90"),
(None, "my_est", "my_est"),
(0.8, "my_est2", "my_est2 (AP = 0.80)"),
]
)
def test_default_labels(pyplot, average_precision, estimator_name,
expected_label):
prec = np.array([1, 0.5, 0])
recall = np.array([0, 0.5, 1])
disp = PrecisionRecallDisplay(prec, recall,
average_precision=average_precision,
estimator_name=estimator_name)
disp.plot()
assert disp.line_.get_label() == expected_label
|