File: test_plot_precision_recall.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (192 lines) | stat: -rw-r--r-- 7,459 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import pytest
import numpy as np
from numpy.testing import assert_allclose

from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.metrics import plot_precision_recall_curve
from sklearn.metrics import PrecisionRecallDisplay
from sklearn.metrics import average_precision_score
from sklearn.metrics import precision_recall_curve
from sklearn.datasets import make_classification
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.linear_model import LogisticRegression
from sklearn.exceptions import NotFittedError
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.compose import make_column_transformer


# TODO: Remove when https://github.com/numpy/numpy/issues/14397 is resolved
pytestmark = pytest.mark.filterwarnings(
    "ignore:In future, it will be an error for 'np.bool_':DeprecationWarning:"
    "matplotlib.*")


def test_errors(pyplot):
    X, y_multiclass = make_classification(n_classes=3, n_samples=50,
                                          n_informative=3,
                                          random_state=0)
    y_binary = y_multiclass == 0

    # Unfitted classifer
    binary_clf = DecisionTreeClassifier()
    with pytest.raises(NotFittedError):
        plot_precision_recall_curve(binary_clf, X, y_binary)
    binary_clf.fit(X, y_binary)

    multi_clf = DecisionTreeClassifier().fit(X, y_multiclass)

    # Fitted multiclass classifier with binary data
    msg = "DecisionTreeClassifier should be a binary classifier"
    with pytest.raises(ValueError, match=msg):
        plot_precision_recall_curve(multi_clf, X, y_binary)

    reg = DecisionTreeRegressor().fit(X, y_multiclass)
    msg = "DecisionTreeRegressor should be a binary classifier"
    with pytest.raises(ValueError, match=msg):
        plot_precision_recall_curve(reg, X, y_binary)


@pytest.mark.parametrize(
    "response_method, msg",
    [("predict_proba", "response method predict_proba is not defined in "
                       "MyClassifier"),
     ("decision_function", "response method decision_function is not defined "
                           "in MyClassifier"),
     ("auto", "response method decision_function or predict_proba is not "
              "defined in MyClassifier"),
     ("bad_method", "response_method must be 'predict_proba', "
                    "'decision_function' or 'auto'")])
def test_error_bad_response(pyplot, response_method, msg):
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)

    class MyClassifier(BaseEstimator, ClassifierMixin):
        def fit(self, X, y):
            self.fitted_ = True
            self.classes_ = [0, 1]
            return self

    clf = MyClassifier().fit(X, y)

    with pytest.raises(ValueError, match=msg):
        plot_precision_recall_curve(clf, X, y, response_method=response_method)


@pytest.mark.parametrize("response_method",
                         ["predict_proba", "decision_function"])
@pytest.mark.parametrize("with_sample_weight", [True, False])
def test_plot_precision_recall(pyplot, response_method, with_sample_weight):
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)

    lr = LogisticRegression().fit(X, y)

    if with_sample_weight:
        rng = np.random.RandomState(42)
        sample_weight = rng.randint(0, 4, size=X.shape[0])
    else:
        sample_weight = None

    disp = plot_precision_recall_curve(lr, X, y, alpha=0.8,
                                       response_method=response_method,
                                       sample_weight=sample_weight)

    y_score = getattr(lr, response_method)(X)
    if response_method == 'predict_proba':
        y_score = y_score[:, 1]

    prec, recall, _ = precision_recall_curve(y, y_score,
                                             sample_weight=sample_weight)
    avg_prec = average_precision_score(y, y_score, sample_weight=sample_weight)

    assert_allclose(disp.precision, prec)
    assert_allclose(disp.recall, recall)
    assert disp.average_precision == pytest.approx(avg_prec)

    assert disp.estimator_name == "LogisticRegression"

    # cannot fail thanks to pyplot fixture
    import matplotlib as mpl  # noqa
    assert isinstance(disp.line_, mpl.lines.Line2D)
    assert disp.line_.get_alpha() == 0.8
    assert isinstance(disp.ax_, mpl.axes.Axes)
    assert isinstance(disp.figure_, mpl.figure.Figure)

    expected_label = "LogisticRegression (AP = {:0.2f})".format(avg_prec)
    assert disp.line_.get_label() == expected_label
    assert disp.ax_.get_xlabel() == "Recall"
    assert disp.ax_.get_ylabel() == "Precision"

    # draw again with another label
    disp.plot(name="MySpecialEstimator")
    expected_label = "MySpecialEstimator (AP = {:0.2f})".format(avg_prec)
    assert disp.line_.get_label() == expected_label


@pytest.mark.parametrize(
    "clf", [make_pipeline(StandardScaler(), LogisticRegression()),
            make_pipeline(make_column_transformer((StandardScaler(), [0, 1])),
                          LogisticRegression())])
def test_precision_recall_curve_pipeline(pyplot, clf):
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
    with pytest.raises(NotFittedError):
        plot_precision_recall_curve(clf, X, y)
    clf.fit(X, y)
    disp = plot_precision_recall_curve(clf, X, y)
    assert disp.estimator_name == clf.__class__.__name__


def test_precision_recall_curve_string_labels(pyplot):
    # regression test #15738
    cancer = load_breast_cancer()
    X = cancer.data
    y = cancer.target_names[cancer.target]

    lr = make_pipeline(StandardScaler(), LogisticRegression())
    lr.fit(X, y)
    for klass in cancer.target_names:
        assert klass in lr.classes_
    disp = plot_precision_recall_curve(lr, X, y)

    y_pred = lr.predict_proba(X)[:, 1]
    avg_prec = average_precision_score(y, y_pred,
                                       pos_label=lr.classes_[1])

    assert disp.average_precision == pytest.approx(avg_prec)
    assert disp.estimator_name == lr.__class__.__name__


def test_plot_precision_recall_curve_estimator_name_multiple_calls(pyplot):
    # non-regression test checking that the `name` used when calling
    # `plot_roc_curve` is used as well when calling `disp.plot()`
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
    clf_name = "my hand-crafted name"
    clf = LogisticRegression().fit(X, y)
    disp = plot_precision_recall_curve(clf, X, y, name=clf_name)
    assert disp.estimator_name == clf_name
    pyplot.close("all")
    disp.plot()
    assert clf_name in disp.line_.get_label()
    pyplot.close("all")
    clf_name = "another_name"
    disp.plot(name=clf_name)
    assert clf_name in disp.line_.get_label()


@pytest.mark.parametrize(
    "average_precision, estimator_name, expected_label",
    [
        (0.9, None, "AP = 0.90"),
        (None, "my_est", "my_est"),
        (0.8, "my_est2", "my_est2 (AP = 0.80)"),
    ]
)
def test_default_labels(pyplot, average_precision, estimator_name,
                        expected_label):
    prec = np.array([1, 0.5, 0])
    recall = np.array([0, 0.5, 1])
    disp = PrecisionRecallDisplay(prec, recall,
                                  average_precision=average_precision,
                                  estimator_name=estimator_name)
    disp.plot()
    assert disp.line_.get_label() == expected_label