File: _dist_metrics.pxd

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (77 lines) | stat: -rw-r--r-- 2,441 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: cdivision=True

cimport cython
cimport numpy as np
from libc.math cimport fabs, sqrt, exp, cos, pow

from ._typedefs cimport DTYPE_t, ITYPE_t, DITYPE_t
from ._typedefs import DTYPE, ITYPE

######################################################################
# Inline distance functions
#
#  We use these for the default (euclidean) case so that they can be
#  inlined.  This leads to faster computation for the most common case
cdef inline DTYPE_t euclidean_dist(DTYPE_t* x1, DTYPE_t* x2,
                                   ITYPE_t size) nogil except -1:
    cdef DTYPE_t tmp, d=0
    cdef np.intp_t j
    for j in range(size):
        tmp = x1[j] - x2[j]
        d += tmp * tmp
    return sqrt(d)


cdef inline DTYPE_t euclidean_rdist(DTYPE_t* x1, DTYPE_t* x2,
                                    ITYPE_t size) nogil except -1:
    cdef DTYPE_t tmp, d=0
    cdef np.intp_t j
    for j in range(size):
        tmp = x1[j] - x2[j]
        d += tmp * tmp
    return d


cdef inline DTYPE_t euclidean_dist_to_rdist(DTYPE_t dist) nogil except -1:
    return dist * dist


cdef inline DTYPE_t euclidean_rdist_to_dist(DTYPE_t dist) nogil except -1:
    return sqrt(dist)


######################################################################
# DistanceMetric base class
cdef class DistanceMetric:
    # The following attributes are required for a few of the subclasses.
    # we must define them here so that cython's limited polymorphism will work.
    # Because we don't expect to instantiate a lot of these objects, the
    # extra memory overhead of this setup should not be an issue.
    cdef DTYPE_t p
    #cdef DTYPE_t[::1] vec
    #cdef DTYPE_t[:, ::1] mat
    cdef np.ndarray vec
    cdef np.ndarray mat
    cdef DTYPE_t* vec_ptr
    cdef DTYPE_t* mat_ptr
    cdef ITYPE_t size
    cdef object func
    cdef object kwargs

    cdef DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
                      ITYPE_t size) nogil except -1

    cdef DTYPE_t rdist(self, DTYPE_t* x1, DTYPE_t* x2,
                       ITYPE_t size) nogil except -1

    cdef int pdist(self, DTYPE_t[:, ::1] X, DTYPE_t[:, ::1] D) except -1

    cdef int cdist(self, DTYPE_t[:, ::1] X, DTYPE_t[:, ::1] Y,
                   DTYPE_t[:, ::1] D) except -1

    cdef DTYPE_t _rdist_to_dist(self, DTYPE_t rdist) nogil except -1

    cdef DTYPE_t _dist_to_rdist(self, DTYPE_t dist) nogil except -1