1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
|
# Authors: Andreas Mueller <amueller@ais.uni-bonn.de>
# Joris Van den Bossche <jorisvandenbossche@gmail.com>
# License: BSD 3 clause
import numpy as np
from scipy import sparse
from ..base import BaseEstimator, TransformerMixin
from ..utils import check_array
from ..utils.validation import check_is_fitted
from ..utils.validation import _deprecate_positional_args
from ._label import _encode, _encode_check_unknown
__all__ = [
'OneHotEncoder',
'OrdinalEncoder'
]
class _BaseEncoder(TransformerMixin, BaseEstimator):
"""
Base class for encoders that includes the code to categorize and
transform the input features.
"""
def _check_X(self, X):
"""
Perform custom check_array:
- convert list of strings to object dtype
- check for missing values for object dtype data (check_array does
not do that)
- return list of features (arrays): this list of features is
constructed feature by feature to preserve the data types
of pandas DataFrame columns, as otherwise information is lost
and cannot be used, eg for the `categories_` attribute.
"""
if not (hasattr(X, 'iloc') and getattr(X, 'ndim', 0) == 2):
# if not a dataframe, do normal check_array validation
X_temp = check_array(X, dtype=None)
if (not hasattr(X, 'dtype')
and np.issubdtype(X_temp.dtype, np.str_)):
X = check_array(X, dtype=np.object)
else:
X = X_temp
needs_validation = False
else:
# pandas dataframe, do validation later column by column, in order
# to keep the dtype information to be used in the encoder.
needs_validation = True
n_samples, n_features = X.shape
X_columns = []
for i in range(n_features):
Xi = self._get_feature(X, feature_idx=i)
Xi = check_array(Xi, ensure_2d=False, dtype=None,
force_all_finite=needs_validation)
X_columns.append(Xi)
return X_columns, n_samples, n_features
def _get_feature(self, X, feature_idx):
if hasattr(X, 'iloc'):
# pandas dataframes
return X.iloc[:, feature_idx]
# numpy arrays, sparse arrays
return X[:, feature_idx]
def _fit(self, X, handle_unknown='error'):
X_list, n_samples, n_features = self._check_X(X)
if self.categories != 'auto':
if len(self.categories) != n_features:
raise ValueError("Shape mismatch: if categories is an array,"
" it has to be of shape (n_features,).")
self.categories_ = []
for i in range(n_features):
Xi = X_list[i]
if self.categories == 'auto':
cats = _encode(Xi)
else:
cats = np.array(self.categories[i], dtype=Xi.dtype)
if Xi.dtype != object:
if not np.all(np.sort(cats) == cats):
raise ValueError("Unsorted categories are not "
"supported for numerical categories")
if handle_unknown == 'error':
diff = _encode_check_unknown(Xi, cats)
if diff:
msg = ("Found unknown categories {0} in column {1}"
" during fit".format(diff, i))
raise ValueError(msg)
self.categories_.append(cats)
def _transform(self, X, handle_unknown='error'):
X_list, n_samples, n_features = self._check_X(X)
X_int = np.zeros((n_samples, n_features), dtype=np.int)
X_mask = np.ones((n_samples, n_features), dtype=np.bool)
if n_features != len(self.categories_):
raise ValueError(
"The number of features in X is different to the number of "
"features of the fitted data. The fitted data had {} features "
"and the X has {} features."
.format(len(self.categories_,), n_features)
)
for i in range(n_features):
Xi = X_list[i]
diff, valid_mask = _encode_check_unknown(Xi, self.categories_[i],
return_mask=True)
if not np.all(valid_mask):
if handle_unknown == 'error':
msg = ("Found unknown categories {0} in column {1}"
" during transform".format(diff, i))
raise ValueError(msg)
else:
# Set the problematic rows to an acceptable value and
# continue `The rows are marked `X_mask` and will be
# removed later.
X_mask[:, i] = valid_mask
# cast Xi into the largest string type necessary
# to handle different lengths of numpy strings
if (self.categories_[i].dtype.kind in ('U', 'S')
and self.categories_[i].itemsize > Xi.itemsize):
Xi = Xi.astype(self.categories_[i].dtype)
else:
Xi = Xi.copy()
Xi[~valid_mask] = self.categories_[i][0]
# We use check_unknown=False, since _encode_check_unknown was
# already called above.
_, encoded = _encode(Xi, self.categories_[i], encode=True,
check_unknown=False)
X_int[:, i] = encoded
return X_int, X_mask
def _more_tags(self):
return {'X_types': ['categorical']}
class OneHotEncoder(_BaseEncoder):
"""
Encode categorical features as a one-hot numeric array.
The input to this transformer should be an array-like of integers or
strings, denoting the values taken on by categorical (discrete) features.
The features are encoded using a one-hot (aka 'one-of-K' or 'dummy')
encoding scheme. This creates a binary column for each category and
returns a sparse matrix or dense array (depending on the ``sparse``
parameter)
By default, the encoder derives the categories based on the unique values
in each feature. Alternatively, you can also specify the `categories`
manually.
This encoding is needed for feeding categorical data to many scikit-learn
estimators, notably linear models and SVMs with the standard kernels.
Note: a one-hot encoding of y labels should use a LabelBinarizer
instead.
Read more in the :ref:`User Guide <preprocessing_categorical_features>`.
.. versionchanged:: 0.20
Parameters
----------
categories : 'auto' or a list of array-like, default='auto'
Categories (unique values) per feature:
- 'auto' : Determine categories automatically from the training data.
- list : ``categories[i]`` holds the categories expected in the ith
column. The passed categories should not mix strings and numeric
values within a single feature, and should be sorted in case of
numeric values.
The used categories can be found in the ``categories_`` attribute.
.. versionadded:: 0.20
drop : {'first', 'if_binary'} or a array-like of shape (n_features,), \
default=None
Specifies a methodology to use to drop one of the categories per
feature. This is useful in situations where perfectly collinear
features cause problems, such as when feeding the resulting data
into a neural network or an unregularized regression.
However, dropping one category breaks the symmetry of the original
representation and can therefore induce a bias in downstream models,
for instance for penalized linear classification or regression models.
- None : retain all features (the default).
- 'first' : drop the first category in each feature. If only one
category is present, the feature will be dropped entirely.
- 'if_binary' : drop the first category in each feature with two
categories. Features with 1 or more than 2 categories are
left intact.
- array : ``drop[i]`` is the category in feature ``X[:, i]`` that
should be dropped.
sparse : bool, default=True
Will return sparse matrix if set True else will return an array.
dtype : number type, default=np.float
Desired dtype of output.
handle_unknown : {'error', 'ignore'}, default='error'
Whether to raise an error or ignore if an unknown categorical feature
is present during transform (default is to raise). When this parameter
is set to 'ignore' and an unknown category is encountered during
transform, the resulting one-hot encoded columns for this feature
will be all zeros. In the inverse transform, an unknown category
will be denoted as None.
Attributes
----------
categories_ : list of arrays
The categories of each feature determined during fitting
(in order of the features in X and corresponding with the output
of ``transform``). This includes the category specified in ``drop``
(if any).
drop_idx_ : array of shape (n_features,)
- ``drop_idx_[i]`` is the index in ``categories_[i]`` of the category
to be dropped for each feature.
- ``drop_idx_[i] = None`` if no category is to be dropped from the
feature with index ``i``, e.g. when `drop='if_binary'` and the
feature isn't binary.
- ``drop_idx_ = None`` if all the transformed features will be
retained.
See Also
--------
sklearn.preprocessing.OrdinalEncoder : Performs an ordinal (integer)
encoding of the categorical features.
sklearn.feature_extraction.DictVectorizer : Performs a one-hot encoding of
dictionary items (also handles string-valued features).
sklearn.feature_extraction.FeatureHasher : Performs an approximate one-hot
encoding of dictionary items or strings.
sklearn.preprocessing.LabelBinarizer : Binarizes labels in a one-vs-all
fashion.
sklearn.preprocessing.MultiLabelBinarizer : Transforms between iterable of
iterables and a multilabel format, e.g. a (samples x classes) binary
matrix indicating the presence of a class label.
Examples
--------
Given a dataset with two features, we let the encoder find the unique
values per feature and transform the data to a binary one-hot encoding.
>>> from sklearn.preprocessing import OneHotEncoder
One can discard categories not seen during `fit`:
>>> enc = OneHotEncoder(handle_unknown='ignore')
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
OneHotEncoder(handle_unknown='ignore')
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 1], ['Male', 4]]).toarray()
array([[1., 0., 1., 0., 0.],
[0., 1., 0., 0., 0.]])
>>> enc.inverse_transform([[0, 1, 1, 0, 0], [0, 0, 0, 1, 0]])
array([['Male', 1],
[None, 2]], dtype=object)
>>> enc.get_feature_names(['gender', 'group'])
array(['gender_Female', 'gender_Male', 'group_1', 'group_2', 'group_3'],
dtype=object)
One can always drop the first column for each feature:
>>> drop_enc = OneHotEncoder(drop='first').fit(X)
>>> drop_enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> drop_enc.transform([['Female', 1], ['Male', 2]]).toarray()
array([[0., 0., 0.],
[1., 1., 0.]])
Or drop a column for feature only having 2 categories:
>>> drop_binary_enc = OneHotEncoder(drop='if_binary').fit(X)
>>> drop_binary_enc.transform([['Female', 1], ['Male', 2]]).toarray()
array([[0., 1., 0., 0.],
[1., 0., 1., 0.]])
"""
@_deprecate_positional_args
def __init__(self, *, categories='auto', drop=None, sparse=True,
dtype=np.float64, handle_unknown='error'):
self.categories = categories
self.sparse = sparse
self.dtype = dtype
self.handle_unknown = handle_unknown
self.drop = drop
def _validate_keywords(self):
if self.handle_unknown not in ('error', 'ignore'):
msg = ("handle_unknown should be either 'error' or 'ignore', "
"got {0}.".format(self.handle_unknown))
raise ValueError(msg)
# If we have both dropped columns and ignored unknown
# values, there will be ambiguous cells. This creates difficulties
# in interpreting the model.
if self.drop is not None and self.handle_unknown != 'error':
raise ValueError(
"`handle_unknown` must be 'error' when the drop parameter is "
"specified, as both would create categories that are all "
"zero.")
def _compute_drop_idx(self):
if self.drop is None:
return None
elif isinstance(self.drop, str):
if self.drop == 'first':
return np.zeros(len(self.categories_), dtype=np.object)
elif self.drop == 'if_binary':
return np.array([0 if len(cats) == 2 else None
for cats in self.categories_], dtype=np.object)
else:
msg = (
"Wrong input for parameter `drop`. Expected "
"'first', 'if_binary', None or array of objects, got {}"
)
raise ValueError(msg.format(type(self.drop)))
else:
try:
self.drop = np.asarray(self.drop, dtype=object)
droplen = len(self.drop)
except (ValueError, TypeError):
msg = (
"Wrong input for parameter `drop`. Expected "
"'first', 'if_binary', None or array of objects, got {}"
)
raise ValueError(msg.format(type(self.drop)))
if droplen != len(self.categories_):
msg = ("`drop` should have length equal to the number "
"of features ({}), got {}")
raise ValueError(msg.format(len(self.categories_),
len(self.drop)))
missing_drops = [(i, val) for i, val in enumerate(self.drop)
if val not in self.categories_[i]]
if any(missing_drops):
msg = ("The following categories were supposed to be "
"dropped, but were not found in the training "
"data.\n{}".format(
"\n".join(
["Category: {}, Feature: {}".format(c, v)
for c, v in missing_drops])))
raise ValueError(msg)
return np.array([np.where(cat_list == val)[0][0]
for (val, cat_list) in
zip(self.drop, self.categories_)],
dtype=np.object)
def fit(self, X, y=None):
"""
Fit OneHotEncoder to X.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to determine the categories of each feature.
y : None
Ignored. This parameter exists only for compatibility with
:class:`sklearn.pipeline.Pipeline`.
Returns
-------
self
"""
self._validate_keywords()
self._fit(X, handle_unknown=self.handle_unknown)
self.drop_idx_ = self._compute_drop_idx()
return self
def fit_transform(self, X, y=None):
"""
Fit OneHotEncoder to X, then transform X.
Equivalent to fit(X).transform(X) but more convenient.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to encode.
y : None
Ignored. This parameter exists only for compatibility with
:class:`sklearn.pipeline.Pipeline`.
Returns
-------
X_out : sparse matrix if sparse=True else a 2-d array
Transformed input.
"""
self._validate_keywords()
return super().fit_transform(X, y)
def transform(self, X):
"""
Transform X using one-hot encoding.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to encode.
Returns
-------
X_out : sparse matrix if sparse=True else a 2-d array
Transformed input.
"""
check_is_fitted(self)
# validation of X happens in _check_X called by _transform
X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown)
n_samples, n_features = X_int.shape
if self.drop_idx_ is not None:
to_drop = self.drop_idx_.copy()
# We remove all the dropped categories from mask, and decrement all
# categories that occur after them to avoid an empty column.
keep_cells = X_int != to_drop
n_values = []
for i, cats in enumerate(self.categories_):
n_cats = len(cats)
# drop='if_binary' but feature isn't binary
if to_drop[i] is None:
# set to cardinality to not drop from X_int
to_drop[i] = n_cats
n_values.append(n_cats)
else: # dropped
n_values.append(n_cats - 1)
to_drop = to_drop.reshape(1, -1)
X_int[X_int > to_drop] -= 1
X_mask &= keep_cells
else:
n_values = [len(cats) for cats in self.categories_]
mask = X_mask.ravel()
feature_indices = np.cumsum([0] + n_values)
indices = (X_int + feature_indices[:-1]).ravel()[mask]
indptr = np.empty(n_samples + 1, dtype=np.int)
indptr[0] = 0
np.sum(X_mask, axis=1, out=indptr[1:])
np.cumsum(indptr[1:], out=indptr[1:])
data = np.ones(indptr[-1])
out = sparse.csr_matrix((data, indices, indptr),
shape=(n_samples, feature_indices[-1]),
dtype=self.dtype)
if not self.sparse:
return out.toarray()
else:
return out
def inverse_transform(self, X):
"""
Convert the data back to the original representation.
In case unknown categories are encountered (all zeros in the
one-hot encoding), ``None`` is used to represent this category.
Parameters
----------
X : array-like or sparse matrix, shape [n_samples, n_encoded_features]
The transformed data.
Returns
-------
X_tr : array-like, shape [n_samples, n_features]
Inverse transformed array.
"""
check_is_fitted(self)
X = check_array(X, accept_sparse='csr')
n_samples, _ = X.shape
n_features = len(self.categories_)
if self.drop_idx_ is None:
n_transformed_features = sum(len(cats)
for cats in self.categories_)
else:
n_transformed_features = sum(
len(cats) - 1 if to_drop is not None else len(cats)
for cats, to_drop in zip(self.categories_, self.drop_idx_)
)
# validate shape of passed X
msg = ("Shape of the passed X data is not correct. Expected {0} "
"columns, got {1}.")
if X.shape[1] != n_transformed_features:
raise ValueError(msg.format(n_transformed_features, X.shape[1]))
# create resulting array of appropriate dtype
dt = np.find_common_type([cat.dtype for cat in self.categories_], [])
X_tr = np.empty((n_samples, n_features), dtype=dt)
j = 0
found_unknown = {}
for i in range(n_features):
if self.drop_idx_ is None or self.drop_idx_[i] is None:
cats = self.categories_[i]
else:
cats = np.delete(self.categories_[i], self.drop_idx_[i])
n_categories = len(cats)
# Only happens if there was a column with a unique
# category. In this case we just fill the column with this
# unique category value.
if n_categories == 0:
X_tr[:, i] = self.categories_[i][self.drop_idx_[i]]
j += n_categories
continue
sub = X[:, j:j + n_categories]
# for sparse X argmax returns 2D matrix, ensure 1D array
labels = np.asarray(sub.argmax(axis=1)).flatten()
X_tr[:, i] = cats[labels]
if self.handle_unknown == 'ignore':
unknown = np.asarray(sub.sum(axis=1) == 0).flatten()
# ignored unknown categories: we have a row of all zero
if unknown.any():
found_unknown[i] = unknown
# drop will either be None or handle_unknown will be error. If
# self.drop_idx_ is not None, then we can safely assume that all of
# the nulls in each column are the dropped value
elif self.drop_idx_ is not None:
dropped = np.asarray(sub.sum(axis=1) == 0).flatten()
if dropped.any():
X_tr[dropped, i] = self.categories_[i][self.drop_idx_[i]]
j += n_categories
# if ignored are found: potentially need to upcast result to
# insert None values
if found_unknown:
if X_tr.dtype != object:
X_tr = X_tr.astype(object)
for idx, mask in found_unknown.items():
X_tr[mask, idx] = None
return X_tr
def get_feature_names(self, input_features=None):
"""
Return feature names for output features.
Parameters
----------
input_features : list of str of shape (n_features,)
String names for input features if available. By default,
"x0", "x1", ... "xn_features" is used.
Returns
-------
output_feature_names : ndarray of shape (n_output_features,)
Array of feature names.
"""
check_is_fitted(self)
cats = self.categories_
if input_features is None:
input_features = ['x%d' % i for i in range(len(cats))]
elif len(input_features) != len(self.categories_):
raise ValueError(
"input_features should have length equal to number of "
"features ({}), got {}".format(len(self.categories_),
len(input_features)))
feature_names = []
for i in range(len(cats)):
names = [
input_features[i] + '_' + str(t) for t in cats[i]]
if self.drop_idx_ is not None and self.drop_idx_[i] is not None:
names.pop(self.drop_idx_[i])
feature_names.extend(names)
return np.array(feature_names, dtype=object)
class OrdinalEncoder(_BaseEncoder):
"""
Encode categorical features as an integer array.
The input to this transformer should be an array-like of integers or
strings, denoting the values taken on by categorical (discrete) features.
The features are converted to ordinal integers. This results in
a single column of integers (0 to n_categories - 1) per feature.
Read more in the :ref:`User Guide <preprocessing_categorical_features>`.
.. versionadded:: 0.20
Parameters
----------
categories : 'auto' or a list of array-like, default='auto'
Categories (unique values) per feature:
- 'auto' : Determine categories automatically from the training data.
- list : ``categories[i]`` holds the categories expected in the ith
column. The passed categories should not mix strings and numeric
values, and should be sorted in case of numeric values.
The used categories can be found in the ``categories_`` attribute.
dtype : number type, default np.float64
Desired dtype of output.
Attributes
----------
categories_ : list of arrays
The categories of each feature determined during fitting
(in order of the features in X and corresponding with the output
of ``transform``).
See Also
--------
sklearn.preprocessing.OneHotEncoder : Performs a one-hot encoding of
categorical features.
sklearn.preprocessing.LabelEncoder : Encodes target labels with values
between 0 and n_classes-1.
Examples
--------
Given a dataset with two features, we let the encoder find the unique
values per feature and transform the data to an ordinal encoding.
>>> from sklearn.preprocessing import OrdinalEncoder
>>> enc = OrdinalEncoder()
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
OrdinalEncoder()
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 3], ['Male', 1]])
array([[0., 2.],
[1., 0.]])
>>> enc.inverse_transform([[1, 0], [0, 1]])
array([['Male', 1],
['Female', 2]], dtype=object)
"""
@_deprecate_positional_args
def __init__(self, *, categories='auto', dtype=np.float64):
self.categories = categories
self.dtype = dtype
def fit(self, X, y=None):
"""
Fit the OrdinalEncoder to X.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to determine the categories of each feature.
y : None
Ignored. This parameter exists only for compatibility with
:class:`sklearn.pipeline.Pipeline`.
Returns
-------
self
"""
self._fit(X)
return self
def transform(self, X):
"""
Transform X to ordinal codes.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to encode.
Returns
-------
X_out : sparse matrix or a 2-d array
Transformed input.
"""
X_int, _ = self._transform(X)
return X_int.astype(self.dtype, copy=False)
def inverse_transform(self, X):
"""
Convert the data back to the original representation.
Parameters
----------
X : array-like or sparse matrix, shape [n_samples, n_encoded_features]
The transformed data.
Returns
-------
X_tr : array-like, shape [n_samples, n_features]
Inverse transformed array.
"""
check_is_fitted(self)
X = check_array(X, accept_sparse='csr')
n_samples, _ = X.shape
n_features = len(self.categories_)
# validate shape of passed X
msg = ("Shape of the passed X data is not correct. Expected {0} "
"columns, got {1}.")
if X.shape[1] != n_features:
raise ValueError(msg.format(n_features, X.shape[1]))
# create resulting array of appropriate dtype
dt = np.find_common_type([cat.dtype for cat in self.categories_], [])
X_tr = np.empty((n_samples, n_features), dtype=dt)
for i in range(n_features):
labels = X[:, i].astype('int64', copy=False)
X_tr[:, i] = self.categories_[i][labels]
return X_tr
|