1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
# Author: Gael Varoquaux
# License: BSD 3 clause
import numpy as np
import scipy.sparse as sp
import pytest
import sklearn
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_no_warnings
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import ignore_warnings
from sklearn.base import BaseEstimator, clone, is_classifier
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn import datasets
from sklearn.base import TransformerMixin
from sklearn.utils._mocking import MockDataFrame
from sklearn import config_context
import pickle
#############################################################################
# A few test classes
class MyEstimator(BaseEstimator):
def __init__(self, l1=0, empty=None):
self.l1 = l1
self.empty = empty
class K(BaseEstimator):
def __init__(self, c=None, d=None):
self.c = c
self.d = d
class T(BaseEstimator):
def __init__(self, a=None, b=None):
self.a = a
self.b = b
class NaNTag(BaseEstimator):
def _more_tags(self):
return {'allow_nan': True}
class NoNaNTag(BaseEstimator):
def _more_tags(self):
return {'allow_nan': False}
class OverrideTag(NaNTag):
def _more_tags(self):
return {'allow_nan': False}
class DiamondOverwriteTag(NaNTag, NoNaNTag):
def _more_tags(self):
return dict()
class InheritDiamondOverwriteTag(DiamondOverwriteTag):
pass
class ModifyInitParams(BaseEstimator):
"""Deprecated behavior.
Equal parameters but with a type cast.
Doesn't fulfill a is a
"""
def __init__(self, a=np.array([0])):
self.a = a.copy()
class Buggy(BaseEstimator):
" A buggy estimator that does not set its parameters right. "
def __init__(self, a=None):
self.a = 1
class NoEstimator:
def __init__(self):
pass
def fit(self, X=None, y=None):
return self
def predict(self, X=None):
return None
class VargEstimator(BaseEstimator):
"""scikit-learn estimators shouldn't have vargs."""
def __init__(self, *vargs):
pass
#############################################################################
# The tests
def test_clone():
# Tests that clone creates a correct deep copy.
# We create an estimator, make a copy of its original state
# (which, in this case, is the current state of the estimator),
# and check that the obtained copy is a correct deep copy.
from sklearn.feature_selection import SelectFpr, f_classif
selector = SelectFpr(f_classif, alpha=0.1)
new_selector = clone(selector)
assert selector is not new_selector
assert selector.get_params() == new_selector.get_params()
selector = SelectFpr(f_classif, alpha=np.zeros((10, 2)))
new_selector = clone(selector)
assert selector is not new_selector
def test_clone_2():
# Tests that clone doesn't copy everything.
# We first create an estimator, give it an own attribute, and
# make a copy of its original state. Then we check that the copy doesn't
# have the specific attribute we manually added to the initial estimator.
from sklearn.feature_selection import SelectFpr, f_classif
selector = SelectFpr(f_classif, alpha=0.1)
selector.own_attribute = "test"
new_selector = clone(selector)
assert not hasattr(new_selector, "own_attribute")
def test_clone_buggy():
# Check that clone raises an error on buggy estimators.
buggy = Buggy()
buggy.a = 2
assert_raises(RuntimeError, clone, buggy)
no_estimator = NoEstimator()
assert_raises(TypeError, clone, no_estimator)
varg_est = VargEstimator()
assert_raises(RuntimeError, clone, varg_est)
est = ModifyInitParams()
assert_raises(RuntimeError, clone, est)
def test_clone_empty_array():
# Regression test for cloning estimators with empty arrays
clf = MyEstimator(empty=np.array([]))
clf2 = clone(clf)
assert_array_equal(clf.empty, clf2.empty)
clf = MyEstimator(empty=sp.csr_matrix(np.array([[0]])))
clf2 = clone(clf)
assert_array_equal(clf.empty.data, clf2.empty.data)
def test_clone_nan():
# Regression test for cloning estimators with default parameter as np.nan
clf = MyEstimator(empty=np.nan)
clf2 = clone(clf)
assert clf.empty is clf2.empty
def test_clone_sparse_matrices():
sparse_matrix_classes = [
getattr(sp, name)
for name in dir(sp) if name.endswith('_matrix')]
for cls in sparse_matrix_classes:
sparse_matrix = cls(np.eye(5))
clf = MyEstimator(empty=sparse_matrix)
clf_cloned = clone(clf)
assert clf.empty.__class__ is clf_cloned.empty.__class__
assert_array_equal(clf.empty.toarray(), clf_cloned.empty.toarray())
def test_clone_estimator_types():
# Check that clone works for parameters that are types rather than
# instances
clf = MyEstimator(empty=MyEstimator)
clf2 = clone(clf)
assert clf.empty is clf2.empty
def test_clone_class_rather_than_instance():
# Check that clone raises expected error message when
# cloning class rather than instance
msg = "You should provide an instance of scikit-learn estimator"
with pytest.raises(TypeError, match=msg):
clone(MyEstimator)
def test_repr():
# Smoke test the repr of the base estimator.
my_estimator = MyEstimator()
repr(my_estimator)
test = T(K(), K())
assert (
repr(test) ==
"T(a=K(), b=K())")
some_est = T(a=["long_params"] * 1000)
assert len(repr(some_est)) == 485
def test_str():
# Smoke test the str of the base estimator
my_estimator = MyEstimator()
str(my_estimator)
def test_get_params():
test = T(K(), K())
assert 'a__d' in test.get_params(deep=True)
assert 'a__d' not in test.get_params(deep=False)
test.set_params(a__d=2)
assert test.a.d == 2
assert_raises(ValueError, test.set_params, a__a=2)
def test_is_classifier():
svc = SVC()
assert is_classifier(svc)
assert is_classifier(GridSearchCV(svc, {'C': [0.1, 1]}))
assert is_classifier(Pipeline([('svc', svc)]))
assert is_classifier(Pipeline(
[('svc_cv', GridSearchCV(svc, {'C': [0.1, 1]}))]))
def test_set_params():
# test nested estimator parameter setting
clf = Pipeline([("svc", SVC())])
# non-existing parameter in svc
assert_raises(ValueError, clf.set_params, svc__stupid_param=True)
# non-existing parameter of pipeline
assert_raises(ValueError, clf.set_params, svm__stupid_param=True)
# we don't currently catch if the things in pipeline are estimators
# bad_pipeline = Pipeline([("bad", NoEstimator())])
# assert_raises(AttributeError, bad_pipeline.set_params,
# bad__stupid_param=True)
def test_set_params_passes_all_parameters():
# Make sure all parameters are passed together to set_params
# of nested estimator. Regression test for #9944
class TestDecisionTree(DecisionTreeClassifier):
def set_params(self, **kwargs):
super().set_params(**kwargs)
# expected_kwargs is in test scope
assert kwargs == expected_kwargs
return self
expected_kwargs = {'max_depth': 5, 'min_samples_leaf': 2}
for est in [Pipeline([('estimator', TestDecisionTree())]),
GridSearchCV(TestDecisionTree(), {})]:
est.set_params(estimator__max_depth=5,
estimator__min_samples_leaf=2)
def test_set_params_updates_valid_params():
# Check that set_params tries to set SVC().C, not
# DecisionTreeClassifier().C
gscv = GridSearchCV(DecisionTreeClassifier(), {})
gscv.set_params(estimator=SVC(), estimator__C=42.0)
assert gscv.estimator.C == 42.0
def test_score_sample_weight():
rng = np.random.RandomState(0)
# test both ClassifierMixin and RegressorMixin
estimators = [DecisionTreeClassifier(max_depth=2),
DecisionTreeRegressor(max_depth=2)]
sets = [datasets.load_iris(),
datasets.load_boston()]
for est, ds in zip(estimators, sets):
est.fit(ds.data, ds.target)
# generate random sample weights
sample_weight = rng.randint(1, 10, size=len(ds.target))
# check that the score with and without sample weights are different
assert (est.score(ds.data, ds.target) !=
est.score(ds.data, ds.target,
sample_weight=sample_weight)), (
"Unweighted and weighted scores "
"are unexpectedly equal")
def test_clone_pandas_dataframe():
class DummyEstimator(TransformerMixin, BaseEstimator):
"""This is a dummy class for generating numerical features
This feature extractor extracts numerical features from pandas data
frame.
Parameters
----------
df: pandas data frame
The pandas data frame parameter.
Notes
-----
"""
def __init__(self, df=None, scalar_param=1):
self.df = df
self.scalar_param = scalar_param
def fit(self, X, y=None):
pass
def transform(self, X):
pass
# build and clone estimator
d = np.arange(10)
df = MockDataFrame(d)
e = DummyEstimator(df, scalar_param=1)
cloned_e = clone(e)
# the test
assert (e.df == cloned_e.df).values.all()
assert e.scalar_param == cloned_e.scalar_param
def test_pickle_version_warning_is_not_raised_with_matching_version():
iris = datasets.load_iris()
tree = DecisionTreeClassifier().fit(iris.data, iris.target)
tree_pickle = pickle.dumps(tree)
assert b"version" in tree_pickle
tree_restored = assert_no_warnings(pickle.loads, tree_pickle)
# test that we can predict with the restored decision tree classifier
score_of_original = tree.score(iris.data, iris.target)
score_of_restored = tree_restored.score(iris.data, iris.target)
assert score_of_original == score_of_restored
class TreeBadVersion(DecisionTreeClassifier):
def __getstate__(self):
return dict(self.__dict__.items(), _sklearn_version="something")
pickle_error_message = (
"Trying to unpickle estimator {estimator} from "
"version {old_version} when using version "
"{current_version}. This might "
"lead to breaking code or invalid results. "
"Use at your own risk.")
def test_pickle_version_warning_is_issued_upon_different_version():
iris = datasets.load_iris()
tree = TreeBadVersion().fit(iris.data, iris.target)
tree_pickle_other = pickle.dumps(tree)
message = pickle_error_message.format(estimator="TreeBadVersion",
old_version="something",
current_version=sklearn.__version__)
assert_warns_message(UserWarning, message, pickle.loads, tree_pickle_other)
class TreeNoVersion(DecisionTreeClassifier):
def __getstate__(self):
return self.__dict__
def test_pickle_version_warning_is_issued_when_no_version_info_in_pickle():
iris = datasets.load_iris()
# TreeNoVersion has no getstate, like pre-0.18
tree = TreeNoVersion().fit(iris.data, iris.target)
tree_pickle_noversion = pickle.dumps(tree)
assert b"version" not in tree_pickle_noversion
message = pickle_error_message.format(estimator="TreeNoVersion",
old_version="pre-0.18",
current_version=sklearn.__version__)
# check we got the warning about using pre-0.18 pickle
assert_warns_message(UserWarning, message, pickle.loads,
tree_pickle_noversion)
def test_pickle_version_no_warning_is_issued_with_non_sklearn_estimator():
iris = datasets.load_iris()
tree = TreeNoVersion().fit(iris.data, iris.target)
tree_pickle_noversion = pickle.dumps(tree)
try:
module_backup = TreeNoVersion.__module__
TreeNoVersion.__module__ = "notsklearn"
assert_no_warnings(pickle.loads, tree_pickle_noversion)
finally:
TreeNoVersion.__module__ = module_backup
class DontPickleAttributeMixin:
def __getstate__(self):
data = self.__dict__.copy()
data["_attribute_not_pickled"] = None
return data
def __setstate__(self, state):
state["_restored"] = True
self.__dict__.update(state)
class MultiInheritanceEstimator(DontPickleAttributeMixin, BaseEstimator):
def __init__(self, attribute_pickled=5):
self.attribute_pickled = attribute_pickled
self._attribute_not_pickled = None
def test_pickling_when_getstate_is_overwritten_by_mixin():
estimator = MultiInheritanceEstimator()
estimator._attribute_not_pickled = "this attribute should not be pickled"
serialized = pickle.dumps(estimator)
estimator_restored = pickle.loads(serialized)
assert estimator_restored.attribute_pickled == 5
assert estimator_restored._attribute_not_pickled is None
assert estimator_restored._restored
def test_pickling_when_getstate_is_overwritten_by_mixin_outside_of_sklearn():
try:
estimator = MultiInheritanceEstimator()
text = "this attribute should not be pickled"
estimator._attribute_not_pickled = text
old_mod = type(estimator).__module__
type(estimator).__module__ = "notsklearn"
serialized = estimator.__getstate__()
assert serialized == {'_attribute_not_pickled': None,
'attribute_pickled': 5}
serialized['attribute_pickled'] = 4
estimator.__setstate__(serialized)
assert estimator.attribute_pickled == 4
assert estimator._restored
finally:
type(estimator).__module__ = old_mod
class SingleInheritanceEstimator(BaseEstimator):
def __init__(self, attribute_pickled=5):
self.attribute_pickled = attribute_pickled
self._attribute_not_pickled = None
def __getstate__(self):
data = self.__dict__.copy()
data["_attribute_not_pickled"] = None
return data
@ignore_warnings(category=(UserWarning))
def test_pickling_works_when_getstate_is_overwritten_in_the_child_class():
estimator = SingleInheritanceEstimator()
estimator._attribute_not_pickled = "this attribute should not be pickled"
serialized = pickle.dumps(estimator)
estimator_restored = pickle.loads(serialized)
assert estimator_restored.attribute_pickled == 5
assert estimator_restored._attribute_not_pickled is None
def test_tag_inheritance():
# test that changing tags by inheritance is not allowed
nan_tag_est = NaNTag()
no_nan_tag_est = NoNaNTag()
assert nan_tag_est._get_tags()['allow_nan']
assert not no_nan_tag_est._get_tags()['allow_nan']
redefine_tags_est = OverrideTag()
assert not redefine_tags_est._get_tags()['allow_nan']
diamond_tag_est = DiamondOverwriteTag()
assert diamond_tag_est._get_tags()['allow_nan']
inherit_diamond_tag_est = InheritDiamondOverwriteTag()
assert inherit_diamond_tag_est._get_tags()['allow_nan']
def test_warns_on_get_params_non_attribute():
class MyEstimator(BaseEstimator):
def __init__(self, param=5):
pass
def fit(self, X, y=None):
return self
est = MyEstimator()
with pytest.warns(FutureWarning, match='AttributeError'):
params = est.get_params()
assert params['param'] is None
def test_repr_mimebundle_():
# Checks the display configuration flag controls the json output
tree = DecisionTreeClassifier()
output = tree._repr_mimebundle_()
assert "text/plain" in output
assert "text/html" not in output
with config_context(display='diagram'):
output = tree._repr_mimebundle_()
assert "text/plain" in output
assert "text/html" in output
def test_repr_html_wraps():
# Checks the display configuration flag controls the html output
tree = DecisionTreeClassifier()
msg = "_repr_html_ is only defined when"
with pytest.raises(AttributeError, match=msg):
output = tree._repr_html_()
with config_context(display='diagram'):
output = tree._repr_html_()
assert "<style>" in output
|