1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
|
"""
The :mod:`sklearn.utils` module includes various utilities.
"""
import pkgutil
import inspect
from importlib import import_module
from operator import itemgetter
from collections.abc import Sequence
from contextlib import contextmanager
from itertools import compress
from itertools import islice
import numbers
import platform
import struct
import timeit
from pathlib import Path
import warnings
import numpy as np
from scipy.sparse import issparse
from .murmurhash import murmurhash3_32
from .class_weight import compute_class_weight, compute_sample_weight
from . import _joblib
from ..exceptions import DataConversionWarning
from .deprecation import deprecated
from .fixes import np_version, parse_version
from ._estimator_html_repr import estimator_html_repr
from .validation import (as_float_array,
assert_all_finite,
check_random_state, column_or_1d, check_array,
check_consistent_length, check_X_y, indexable,
check_symmetric, check_scalar,
_deprecate_positional_args)
from .. import get_config
# Do not deprecate parallel_backend and register_parallel_backend as they are
# needed to tune `scikit-learn` behavior and have different effect if called
# from the vendored version or or the site-package version. The other are
# utilities that are independent of scikit-learn so they are not part of
# scikit-learn public API.
parallel_backend = _joblib.parallel_backend
register_parallel_backend = _joblib.register_parallel_backend
__all__ = ["murmurhash3_32", "as_float_array",
"assert_all_finite", "check_array",
"check_random_state",
"compute_class_weight", "compute_sample_weight",
"column_or_1d", "safe_indexing",
"check_consistent_length", "check_X_y", "check_scalar", 'indexable',
"check_symmetric", "indices_to_mask", "deprecated",
"parallel_backend", "register_parallel_backend",
"resample", "shuffle", "check_matplotlib_support", "all_estimators",
"DataConversionWarning", "estimator_html_repr"
]
IS_PYPY = platform.python_implementation() == 'PyPy'
_IS_32BIT = 8 * struct.calcsize("P") == 32
class Bunch(dict):
"""Container object exposing keys as attributes
Bunch objects are sometimes used as an output for functions and methods.
They extend dictionaries by enabling values to be accessed by key,
`bunch["value_key"]`, or by an attribute, `bunch.value_key`.
Examples
--------
>>> b = Bunch(a=1, b=2)
>>> b['b']
2
>>> b.b
2
>>> b.a = 3
>>> b['a']
3
>>> b.c = 6
>>> b['c']
6
"""
def __init__(self, **kwargs):
super().__init__(kwargs)
def __setattr__(self, key, value):
self[key] = value
def __dir__(self):
return self.keys()
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(key)
def __setstate__(self, state):
# Bunch pickles generated with scikit-learn 0.16.* have an non
# empty __dict__. This causes a surprising behaviour when
# loading these pickles scikit-learn 0.17: reading bunch.key
# uses __dict__ but assigning to bunch.key use __setattr__ and
# only changes bunch['key']. More details can be found at:
# https://github.com/scikit-learn/scikit-learn/issues/6196.
# Overriding __setstate__ to be a noop has the effect of
# ignoring the pickled __dict__
pass
def safe_mask(X, mask):
"""Return a mask which is safe to use on X.
Parameters
----------
X : {array-like, sparse matrix}
Data on which to apply mask.
mask : array
Mask to be used on X.
Returns
-------
mask
"""
mask = np.asarray(mask)
if np.issubdtype(mask.dtype, np.signedinteger):
return mask
if hasattr(X, "toarray"):
ind = np.arange(mask.shape[0])
mask = ind[mask]
return mask
def axis0_safe_slice(X, mask, len_mask):
"""
This mask is safer than safe_mask since it returns an
empty array, when a sparse matrix is sliced with a boolean mask
with all False, instead of raising an unhelpful error in older
versions of SciPy.
See: https://github.com/scipy/scipy/issues/5361
Also note that we can avoid doing the dot product by checking if
the len_mask is not zero in _huber_loss_and_gradient but this
is not going to be the bottleneck, since the number of outliers
and non_outliers are typically non-zero and it makes the code
tougher to follow.
Parameters
----------
X : {array-like, sparse matrix}
Data on which to apply mask.
mask : array
Mask to be used on X.
len_mask : int
The length of the mask.
Returns
-------
mask
"""
if len_mask != 0:
return X[safe_mask(X, mask), :]
return np.zeros(shape=(0, X.shape[1]))
def _array_indexing(array, key, key_dtype, axis):
"""Index an array or scipy.sparse consistently across NumPy version."""
if np_version < parse_version('1.12') or issparse(array):
# FIXME: Remove the check for NumPy when using >= 1.12
# check if we have an boolean array-likes to make the proper indexing
if key_dtype == 'bool':
key = np.asarray(key)
if isinstance(key, tuple):
key = list(key)
return array[key] if axis == 0 else array[:, key]
def _pandas_indexing(X, key, key_dtype, axis):
"""Index a pandas dataframe or a series."""
if hasattr(key, 'shape'):
# Work-around for indexing with read-only key in pandas
# FIXME: solved in pandas 0.25
key = np.asarray(key)
key = key if key.flags.writeable else key.copy()
elif isinstance(key, tuple):
key = list(key)
# check whether we should index with loc or iloc
indexer = X.iloc if key_dtype == 'int' else X.loc
return indexer[:, key] if axis else indexer[key]
def _list_indexing(X, key, key_dtype):
"""Index a Python list."""
if np.isscalar(key) or isinstance(key, slice):
# key is a slice or a scalar
return X[key]
if key_dtype == 'bool':
# key is a boolean array-like
return list(compress(X, key))
# key is a integer array-like of key
return [X[idx] for idx in key]
def _determine_key_type(key, accept_slice=True):
"""Determine the data type of key.
Parameters
----------
key : scalar, slice or array-like
The key from which we want to infer the data type.
accept_slice : bool, default=True
Whether or not to raise an error if the key is a slice.
Returns
-------
dtype : {'int', 'str', 'bool', None}
Returns the data type of key.
"""
err_msg = ("No valid specification of the columns. Only a scalar, list or "
"slice of all integers or all strings, or boolean mask is "
"allowed")
dtype_to_str = {int: 'int', str: 'str', bool: 'bool', np.bool_: 'bool'}
array_dtype_to_str = {'i': 'int', 'u': 'int', 'b': 'bool', 'O': 'str',
'U': 'str', 'S': 'str'}
if key is None:
return None
if isinstance(key, tuple(dtype_to_str.keys())):
try:
return dtype_to_str[type(key)]
except KeyError:
raise ValueError(err_msg)
if isinstance(key, slice):
if not accept_slice:
raise TypeError(
'Only array-like or scalar are supported. '
'A Python slice was given.'
)
if key.start is None and key.stop is None:
return None
key_start_type = _determine_key_type(key.start)
key_stop_type = _determine_key_type(key.stop)
if key_start_type is not None and key_stop_type is not None:
if key_start_type != key_stop_type:
raise ValueError(err_msg)
if key_start_type is not None:
return key_start_type
return key_stop_type
if isinstance(key, (list, tuple)):
unique_key = set(key)
key_type = {_determine_key_type(elt) for elt in unique_key}
if not key_type:
return None
if len(key_type) != 1:
raise ValueError(err_msg)
return key_type.pop()
if hasattr(key, 'dtype'):
try:
return array_dtype_to_str[key.dtype.kind]
except KeyError:
raise ValueError(err_msg)
raise ValueError(err_msg)
# TODO: remove in 0.24
@deprecated("safe_indexing is deprecated in version "
"0.22 and will be removed in version 0.24.")
def safe_indexing(X, indices, *, axis=0):
"""Return rows, items or columns of X using indices.
.. deprecated:: 0.22
This function was deprecated in version 0.22 and will be removed in
version 0.24.
Parameters
----------
X : array-like, sparse-matrix, list, pandas.DataFrame, pandas.Series
Data from which to sample rows, items or columns. `list` are only
supported when `axis=0`.
indices : bool, int, str, slice, array-like
- If `axis=0`, boolean and integer array-like, integer slice,
and scalar integer are supported.
- If `axis=1`:
- to select a single column, `indices` can be of `int` type for
all `X` types and `str` only for dataframe. The selected subset
will be 1D, unless `X` is a sparse matrix in which case it will
be 2D.
- to select multiples columns, `indices` can be one of the
following: `list`, `array`, `slice`. The type used in
these containers can be one of the following: `int`, 'bool' and
`str`. However, `str` is only supported when `X` is a dataframe.
The selected subset will be 2D.
axis : int, default=0
The axis along which `X` will be subsampled. `axis=0` will select
rows while `axis=1` will select columns.
Returns
-------
subset
Subset of X on axis 0 or 1.
Notes
-----
CSR, CSC, and LIL sparse matrices are supported. COO sparse matrices are
not supported.
"""
return _safe_indexing(X, indices, axis=axis)
def _safe_indexing(X, indices, *, axis=0):
"""Return rows, items or columns of X using indices.
.. warning::
This utility is documented, but **private**. This means that
backward compatibility might be broken without any deprecation
cycle.
Parameters
----------
X : array-like, sparse-matrix, list, pandas.DataFrame, pandas.Series
Data from which to sample rows, items or columns. `list` are only
supported when `axis=0`.
indices : bool, int, str, slice, array-like
- If `axis=0`, boolean and integer array-like, integer slice,
and scalar integer are supported.
- If `axis=1`:
- to select a single column, `indices` can be of `int` type for
all `X` types and `str` only for dataframe. The selected subset
will be 1D, unless `X` is a sparse matrix in which case it will
be 2D.
- to select multiples columns, `indices` can be one of the
following: `list`, `array`, `slice`. The type used in
these containers can be one of the following: `int`, 'bool' and
`str`. However, `str` is only supported when `X` is a dataframe.
The selected subset will be 2D.
axis : int, default=0
The axis along which `X` will be subsampled. `axis=0` will select
rows while `axis=1` will select columns.
Returns
-------
subset
Subset of X on axis 0 or 1.
Notes
-----
CSR, CSC, and LIL sparse matrices are supported. COO sparse matrices are
not supported.
"""
if indices is None:
return X
if axis not in (0, 1):
raise ValueError(
"'axis' should be either 0 (to index rows) or 1 (to index "
" column). Got {} instead.".format(axis)
)
indices_dtype = _determine_key_type(indices)
if axis == 0 and indices_dtype == 'str':
raise ValueError(
"String indexing is not supported with 'axis=0'"
)
if axis == 1 and X.ndim != 2:
raise ValueError(
"'X' should be a 2D NumPy array, 2D sparse matrix or pandas "
"dataframe when indexing the columns (i.e. 'axis=1'). "
"Got {} instead with {} dimension(s).".format(type(X), X.ndim)
)
if axis == 1 and indices_dtype == 'str' and not hasattr(X, 'loc'):
raise ValueError(
"Specifying the columns using strings is only supported for "
"pandas DataFrames"
)
if hasattr(X, "iloc"):
return _pandas_indexing(X, indices, indices_dtype, axis=axis)
elif hasattr(X, "shape"):
return _array_indexing(X, indices, indices_dtype, axis=axis)
else:
return _list_indexing(X, indices, indices_dtype)
def _get_column_indices(X, key):
"""Get feature column indices for input data X and key.
For accepted values of `key`, see the docstring of
:func:`_safe_indexing_column`.
"""
n_columns = X.shape[1]
key_dtype = _determine_key_type(key)
if isinstance(key, (list, tuple)) and not key:
# we get an empty list
return []
elif key_dtype in ('bool', 'int'):
# Convert key into positive indexes
try:
idx = _safe_indexing(np.arange(n_columns), key)
except IndexError as e:
raise ValueError(
'all features must be in [0, {}] or [-{}, 0]'
.format(n_columns - 1, n_columns)
) from e
return np.atleast_1d(idx).tolist()
elif key_dtype == 'str':
try:
all_columns = X.columns
except AttributeError:
raise ValueError("Specifying the columns using strings is only "
"supported for pandas DataFrames")
if isinstance(key, str):
columns = [key]
elif isinstance(key, slice):
start, stop = key.start, key.stop
if start is not None:
start = all_columns.get_loc(start)
if stop is not None:
# pandas indexing with strings is endpoint included
stop = all_columns.get_loc(stop) + 1
else:
stop = n_columns + 1
return list(range(n_columns)[slice(start, stop)])
else:
columns = list(key)
try:
column_indices = []
for col in columns:
col_idx = all_columns.get_loc(col)
if not isinstance(col_idx, numbers.Integral):
raise ValueError(f"Selected columns, {columns}, are not "
"unique in dataframe")
column_indices.append(col_idx)
except KeyError as e:
raise ValueError(
"A given column is not a column of the dataframe"
) from e
return column_indices
else:
raise ValueError("No valid specification of the columns. Only a "
"scalar, list or slice of all integers or all "
"strings, or boolean mask is allowed")
def resample(*arrays, **options):
"""Resample arrays or sparse matrices in a consistent way
The default strategy implements one step of the bootstrapping
procedure.
Parameters
----------
*arrays : sequence of indexable data-structures
Indexable data-structures can be arrays, lists, dataframes or scipy
sparse matrices with consistent first dimension.
Other Parameters
----------------
replace : boolean, True by default
Implements resampling with replacement. If False, this will implement
(sliced) random permutations.
n_samples : int, None by default
Number of samples to generate. If left to None this is
automatically set to the first dimension of the arrays.
If replace is False it should not be larger than the length of
arrays.
random_state : int, RandomState instance or None, optional (default=None)
Determines random number generation for shuffling
the data.
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
stratify : array-like or None (default=None)
If not None, data is split in a stratified fashion, using this as
the class labels.
Returns
-------
resampled_arrays : sequence of indexable data-structures
Sequence of resampled copies of the collections. The original arrays
are not impacted.
Examples
--------
It is possible to mix sparse and dense arrays in the same run::
>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
>>> y = np.array([0, 1, 2])
>>> from scipy.sparse import coo_matrix
>>> X_sparse = coo_matrix(X)
>>> from sklearn.utils import resample
>>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0)
>>> X
array([[1., 0.],
[2., 1.],
[1., 0.]])
>>> X_sparse
<3x2 sparse matrix of type '<... 'numpy.float64'>'
with 4 stored elements in Compressed Sparse Row format>
>>> X_sparse.toarray()
array([[1., 0.],
[2., 1.],
[1., 0.]])
>>> y
array([0, 1, 0])
>>> resample(y, n_samples=2, random_state=0)
array([0, 1])
Example using stratification::
>>> y = [0, 0, 1, 1, 1, 1, 1, 1, 1]
>>> resample(y, n_samples=5, replace=False, stratify=y,
... random_state=0)
[1, 1, 1, 0, 1]
See also
--------
:func:`sklearn.utils.shuffle`
"""
random_state = check_random_state(options.pop('random_state', None))
replace = options.pop('replace', True)
max_n_samples = options.pop('n_samples', None)
stratify = options.pop('stratify', None)
if options:
raise ValueError("Unexpected kw arguments: %r" % options.keys())
if len(arrays) == 0:
return None
first = arrays[0]
n_samples = first.shape[0] if hasattr(first, 'shape') else len(first)
if max_n_samples is None:
max_n_samples = n_samples
elif (max_n_samples > n_samples) and (not replace):
raise ValueError("Cannot sample %d out of arrays with dim %d "
"when replace is False" % (max_n_samples,
n_samples))
check_consistent_length(*arrays)
if stratify is None:
if replace:
indices = random_state.randint(0, n_samples, size=(max_n_samples,))
else:
indices = np.arange(n_samples)
random_state.shuffle(indices)
indices = indices[:max_n_samples]
else:
# Code adapted from StratifiedShuffleSplit()
y = check_array(stratify, ensure_2d=False, dtype=None)
if y.ndim == 2:
# for multi-label y, map each distinct row to a string repr
# using join because str(row) uses an ellipsis if len(row) > 1000
y = np.array([' '.join(row.astype('str')) for row in y])
classes, y_indices = np.unique(y, return_inverse=True)
n_classes = classes.shape[0]
class_counts = np.bincount(y_indices)
# Find the sorted list of instances for each class:
# (np.unique above performs a sort, so code is O(n logn) already)
class_indices = np.split(np.argsort(y_indices, kind='mergesort'),
np.cumsum(class_counts)[:-1])
n_i = _approximate_mode(class_counts, max_n_samples, random_state)
indices = []
for i in range(n_classes):
indices_i = random_state.choice(class_indices[i], n_i[i],
replace=replace)
indices.extend(indices_i)
indices = random_state.permutation(indices)
# convert sparse matrices to CSR for row-based indexing
arrays = [a.tocsr() if issparse(a) else a for a in arrays]
resampled_arrays = [_safe_indexing(a, indices) for a in arrays]
if len(resampled_arrays) == 1:
# syntactic sugar for the unit argument case
return resampled_arrays[0]
else:
return resampled_arrays
def shuffle(*arrays, **options):
"""Shuffle arrays or sparse matrices in a consistent way
This is a convenience alias to ``resample(*arrays, replace=False)`` to do
random permutations of the collections.
Parameters
----------
*arrays : sequence of indexable data-structures
Indexable data-structures can be arrays, lists, dataframes or scipy
sparse matrices with consistent first dimension.
Other Parameters
----------------
random_state : int, RandomState instance or None, optional (default=None)
Determines random number generation for shuffling
the data.
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
n_samples : int, None by default
Number of samples to generate. If left to None this is
automatically set to the first dimension of the arrays.
Returns
-------
shuffled_arrays : sequence of indexable data-structures
Sequence of shuffled copies of the collections. The original arrays
are not impacted.
Examples
--------
It is possible to mix sparse and dense arrays in the same run::
>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
>>> y = np.array([0, 1, 2])
>>> from scipy.sparse import coo_matrix
>>> X_sparse = coo_matrix(X)
>>> from sklearn.utils import shuffle
>>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0)
>>> X
array([[0., 0.],
[2., 1.],
[1., 0.]])
>>> X_sparse
<3x2 sparse matrix of type '<... 'numpy.float64'>'
with 3 stored elements in Compressed Sparse Row format>
>>> X_sparse.toarray()
array([[0., 0.],
[2., 1.],
[1., 0.]])
>>> y
array([2, 1, 0])
>>> shuffle(y, n_samples=2, random_state=0)
array([0, 1])
See also
--------
:func:`sklearn.utils.resample`
"""
options['replace'] = False
return resample(*arrays, **options)
@_deprecate_positional_args
def safe_sqr(X, *, copy=True):
"""Element wise squaring of array-likes and sparse matrices.
Parameters
----------
X : array like, matrix, sparse matrix
copy : boolean, optional, default True
Whether to create a copy of X and operate on it or to perform
inplace computation (default behaviour).
Returns
-------
X ** 2 : element wise square
"""
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], ensure_2d=False)
if issparse(X):
if copy:
X = X.copy()
X.data **= 2
else:
if copy:
X = X ** 2
else:
X **= 2
return X
def _chunk_generator(gen, chunksize):
"""Chunk generator, ``gen`` into lists of length ``chunksize``. The last
chunk may have a length less than ``chunksize``."""
while True:
chunk = list(islice(gen, chunksize))
if chunk:
yield chunk
else:
return
@_deprecate_positional_args
def gen_batches(n, batch_size, *, min_batch_size=0):
"""Generator to create slices containing batch_size elements, from 0 to n.
The last slice may contain less than batch_size elements, when batch_size
does not divide n.
Parameters
----------
n : int
batch_size : int
Number of element in each batch
min_batch_size : int, default=0
Minimum batch size to produce.
Yields
------
slice of batch_size elements
Examples
--------
>>> from sklearn.utils import gen_batches
>>> list(gen_batches(7, 3))
[slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)]
>>> list(gen_batches(6, 3))
[slice(0, 3, None), slice(3, 6, None)]
>>> list(gen_batches(2, 3))
[slice(0, 2, None)]
>>> list(gen_batches(7, 3, min_batch_size=0))
[slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)]
>>> list(gen_batches(7, 3, min_batch_size=2))
[slice(0, 3, None), slice(3, 7, None)]
"""
if not isinstance(batch_size, numbers.Integral):
raise TypeError("gen_batches got batch_size=%s, must be an"
" integer" % batch_size)
if batch_size <= 0:
raise ValueError("gen_batches got batch_size=%s, must be"
" positive" % batch_size)
start = 0
for _ in range(int(n // batch_size)):
end = start + batch_size
if end + min_batch_size > n:
continue
yield slice(start, end)
start = end
if start < n:
yield slice(start, n)
@_deprecate_positional_args
def gen_even_slices(n, n_packs, *, n_samples=None):
"""Generator to create n_packs slices going up to n.
Parameters
----------
n : int
n_packs : int
Number of slices to generate.
n_samples : int or None (default = None)
Number of samples. Pass n_samples when the slices are to be used for
sparse matrix indexing; slicing off-the-end raises an exception, while
it works for NumPy arrays.
Yields
------
slice
Examples
--------
>>> from sklearn.utils import gen_even_slices
>>> list(gen_even_slices(10, 1))
[slice(0, 10, None)]
>>> list(gen_even_slices(10, 10))
[slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)]
>>> list(gen_even_slices(10, 5))
[slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)]
>>> list(gen_even_slices(10, 3))
[slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)]
"""
start = 0
if n_packs < 1:
raise ValueError("gen_even_slices got n_packs=%s, must be >=1"
% n_packs)
for pack_num in range(n_packs):
this_n = n // n_packs
if pack_num < n % n_packs:
this_n += 1
if this_n > 0:
end = start + this_n
if n_samples is not None:
end = min(n_samples, end)
yield slice(start, end, None)
start = end
def tosequence(x):
"""Cast iterable x to a Sequence, avoiding a copy if possible.
Parameters
----------
x : iterable
"""
if isinstance(x, np.ndarray):
return np.asarray(x)
elif isinstance(x, Sequence):
return x
else:
return list(x)
def _to_object_array(sequence):
"""Convert sequence to a 1-D NumPy array of object dtype.
numpy.array constructor has a similar use but it's output
is ambiguous. It can be 1-D NumPy array of object dtype if
the input is a ragged array, but if the input is a list of
equal length arrays, then the output is a 2D numpy.array.
_to_object_array solves this ambiguity by guarantying that
the output is a 1-D NumPy array of objects for any input.
Parameters
----------
sequence : array-like of shape (n_elements,)
The sequence to be converted.
Returns
-------
out : ndarray of shape (n_elements,), dtype=object
The converted sequence into a 1-D NumPy array of object dtype.
Examples
--------
>>> import numpy as np
>>> from sklearn.utils import _to_object_array
>>> _to_object_array([np.array([0]), np.array([1])])
array([array([0]), array([1])], dtype=object)
>>> _to_object_array([np.array([0]), np.array([1, 2])])
array([array([0]), array([1, 2])], dtype=object)
>>> np.array([np.array([0]), np.array([1])])
array([[0],
[1]])
>>> np.array([np.array([0]), np.array([1, 2])])
array([array([0]), array([1, 2])], dtype=object)
"""
out = np.empty(len(sequence), dtype=object)
out[:] = sequence
return out
def indices_to_mask(indices, mask_length):
"""Convert list of indices to boolean mask.
Parameters
----------
indices : list-like
List of integers treated as indices.
mask_length : int
Length of boolean mask to be generated.
This parameter must be greater than max(indices)
Returns
-------
mask : 1d boolean nd-array
Boolean array that is True where indices are present, else False.
Examples
--------
>>> from sklearn.utils import indices_to_mask
>>> indices = [1, 2 , 3, 4]
>>> indices_to_mask(indices, 5)
array([False, True, True, True, True])
"""
if mask_length <= np.max(indices):
raise ValueError("mask_length must be greater than max(indices)")
mask = np.zeros(mask_length, dtype=np.bool)
mask[indices] = True
return mask
def _message_with_time(source, message, time):
"""Create one line message for logging purposes
Parameters
----------
source : str
String indicating the source or the reference of the message
message : str
Short message
time : int
Time in seconds
"""
start_message = "[%s] " % source
# adapted from joblib.logger.short_format_time without the Windows -.1s
# adjustment
if time > 60:
time_str = "%4.1fmin" % (time / 60)
else:
time_str = " %5.1fs" % time
end_message = " %s, total=%s" % (message, time_str)
dots_len = (70 - len(start_message) - len(end_message))
return "%s%s%s" % (start_message, dots_len * '.', end_message)
@contextmanager
def _print_elapsed_time(source, message=None):
"""Log elapsed time to stdout when the context is exited
Parameters
----------
source : str
String indicating the source or the reference of the message
message : str or None
Short message. If None, nothing will be printed
Returns
-------
context_manager
Prints elapsed time upon exit if verbose
"""
if message is None:
yield
else:
start = timeit.default_timer()
yield
print(
_message_with_time(source, message,
timeit.default_timer() - start))
@_deprecate_positional_args
def get_chunk_n_rows(row_bytes, *, max_n_rows=None, working_memory=None):
"""Calculates how many rows can be processed within working_memory
Parameters
----------
row_bytes : int
The expected number of bytes of memory that will be consumed
during the processing of each row.
max_n_rows : int, optional
The maximum return value.
working_memory : int or float, optional
The number of rows to fit inside this number of MiB will be returned.
When None (default), the value of
``sklearn.get_config()['working_memory']`` is used.
Returns
-------
int or the value of n_samples
Warns
-----
Issues a UserWarning if ``row_bytes`` exceeds ``working_memory`` MiB.
"""
if working_memory is None:
working_memory = get_config()['working_memory']
chunk_n_rows = int(working_memory * (2 ** 20) // row_bytes)
if max_n_rows is not None:
chunk_n_rows = min(chunk_n_rows, max_n_rows)
if chunk_n_rows < 1:
warnings.warn('Could not adhere to working_memory config. '
'Currently %.0fMiB, %.0fMiB required.' %
(working_memory, np.ceil(row_bytes * 2 ** -20)))
chunk_n_rows = 1
return chunk_n_rows
def is_scalar_nan(x):
"""Tests if x is NaN
This function is meant to overcome the issue that np.isnan does not allow
non-numerical types as input, and that np.nan is not np.float('nan').
Parameters
----------
x : any type
Returns
-------
boolean
Examples
--------
>>> is_scalar_nan(np.nan)
True
>>> is_scalar_nan(float("nan"))
True
>>> is_scalar_nan(None)
False
>>> is_scalar_nan("")
False
>>> is_scalar_nan([np.nan])
False
"""
# convert from numpy.bool_ to python bool to ensure that testing
# is_scalar_nan(x) is True does not fail.
return bool(isinstance(x, numbers.Real) and np.isnan(x))
def _approximate_mode(class_counts, n_draws, rng):
"""Computes approximate mode of multivariate hypergeometric.
This is an approximation to the mode of the multivariate
hypergeometric given by class_counts and n_draws.
It shouldn't be off by more than one.
It is the mostly likely outcome of drawing n_draws many
samples from the population given by class_counts.
Parameters
----------
class_counts : ndarray of int
Population per class.
n_draws : int
Number of draws (samples to draw) from the overall population.
rng : random state
Used to break ties.
Returns
-------
sampled_classes : ndarray of int
Number of samples drawn from each class.
np.sum(sampled_classes) == n_draws
Examples
--------
>>> import numpy as np
>>> from sklearn.utils import _approximate_mode
>>> _approximate_mode(class_counts=np.array([4, 2]), n_draws=3, rng=0)
array([2, 1])
>>> _approximate_mode(class_counts=np.array([5, 2]), n_draws=4, rng=0)
array([3, 1])
>>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]),
... n_draws=2, rng=0)
array([0, 1, 1, 0])
>>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]),
... n_draws=2, rng=42)
array([1, 1, 0, 0])
"""
rng = check_random_state(rng)
# this computes a bad approximation to the mode of the
# multivariate hypergeometric given by class_counts and n_draws
continuous = n_draws * class_counts / class_counts.sum()
# floored means we don't overshoot n_samples, but probably undershoot
floored = np.floor(continuous)
# we add samples according to how much "left over" probability
# they had, until we arrive at n_samples
need_to_add = int(n_draws - floored.sum())
if need_to_add > 0:
remainder = continuous - floored
values = np.sort(np.unique(remainder))[::-1]
# add according to remainder, but break ties
# randomly to avoid biases
for value in values:
inds, = np.where(remainder == value)
# if we need_to_add less than what's in inds
# we draw randomly from them.
# if we need to add more, we add them all and
# go to the next value
add_now = min(len(inds), need_to_add)
inds = rng.choice(inds, size=add_now, replace=False)
floored[inds] += 1
need_to_add -= add_now
if need_to_add == 0:
break
return floored.astype(np.int)
def check_matplotlib_support(caller_name):
"""Raise ImportError with detailed error message if mpl is not installed.
Plot utilities like :func:`plot_partial_dependence` should lazily import
matplotlib and call this helper before any computation.
Parameters
----------
caller_name : str
The name of the caller that requires matplotlib.
"""
try:
import matplotlib # noqa
except ImportError as e:
raise ImportError(
"{} requires matplotlib. You can install matplotlib with "
"`pip install matplotlib`".format(caller_name)
) from e
def check_pandas_support(caller_name):
"""Raise ImportError with detailed error message if pandsa is not
installed.
Plot utilities like :func:`fetch_openml` should lazily import
pandas and call this helper before any computation.
Parameters
----------
caller_name : str
The name of the caller that requires pandas.
"""
try:
import pandas # noqa
return pandas
except ImportError as e:
raise ImportError(
"{} requires pandas.".format(caller_name)
) from e
def all_estimators(type_filter=None):
"""Get a list of all estimators from sklearn.
This function crawls the module and gets all classes that inherit
from BaseEstimator. Classes that are defined in test-modules are not
included.
By default meta_estimators such as GridSearchCV are also not included.
Parameters
----------
type_filter : string, list of string, or None, default=None
Which kind of estimators should be returned. If None, no filter is
applied and all estimators are returned. Possible values are
'classifier', 'regressor', 'cluster' and 'transformer' to get
estimators only of these specific types, or a list of these to
get the estimators that fit at least one of the types.
Returns
-------
estimators : list of tuples
List of (name, class), where ``name`` is the class name as string
and ``class`` is the actuall type of the class.
"""
# lazy import to avoid circular imports from sklearn.base
from ._testing import ignore_warnings
from ..base import (BaseEstimator, ClassifierMixin, RegressorMixin,
TransformerMixin, ClusterMixin)
def is_abstract(c):
if not(hasattr(c, '__abstractmethods__')):
return False
if not len(c.__abstractmethods__):
return False
return True
all_classes = []
modules_to_ignore = {"tests", "externals", "setup", "conftest"}
root = str(Path(__file__).parent.parent) # sklearn package
# Ignore deprecation warnings triggered at import time and from walking
# packages
with ignore_warnings(category=FutureWarning):
for importer, modname, ispkg in pkgutil.walk_packages(
path=[root], prefix='sklearn.'):
mod_parts = modname.split(".")
if (any(part in modules_to_ignore for part in mod_parts)
or '._' in modname):
continue
module = import_module(modname)
classes = inspect.getmembers(module, inspect.isclass)
classes = [(name, est_cls) for name, est_cls in classes
if not name.startswith("_")]
# TODO: Remove when FeatureHasher is implemented in PYPY
# Skips FeatureHasher for PYPY
if IS_PYPY and 'feature_extraction' in modname:
classes = [(name, est_cls) for name, est_cls in classes
if name == "FeatureHasher"]
all_classes.extend(classes)
all_classes = set(all_classes)
estimators = [c for c in all_classes
if (issubclass(c[1], BaseEstimator) and
c[0] != 'BaseEstimator')]
# get rid of abstract base classes
estimators = [c for c in estimators if not is_abstract(c[1])]
if type_filter is not None:
if not isinstance(type_filter, list):
type_filter = [type_filter]
else:
type_filter = list(type_filter) # copy
filtered_estimators = []
filters = {'classifier': ClassifierMixin,
'regressor': RegressorMixin,
'transformer': TransformerMixin,
'cluster': ClusterMixin}
for name, mixin in filters.items():
if name in type_filter:
type_filter.remove(name)
filtered_estimators.extend([est for est in estimators
if issubclass(est[1], mixin)])
estimators = filtered_estimators
if type_filter:
raise ValueError("Parameter type_filter must be 'classifier', "
"'regressor', 'transformer', 'cluster' or "
"None, got"
" %s." % repr(type_filter))
# drop duplicates, sort for reproducibility
# itemgetter is used to ensure the sort does not extend to the 2nd item of
# the tuple
return sorted(set(estimators), key=itemgetter(0))
|