File: stats.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (18 lines) | stat: -rw-r--r-- 631 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import numpy as np

from .extmath import stable_cumsum


def _weighted_percentile(array, sample_weight, percentile=50):
    """
    Compute the weighted ``percentile`` of ``array`` with ``sample_weight``.
    """
    sorted_idx = np.argsort(array)

    # Find index of median prediction for each sample
    weight_cdf = stable_cumsum(sample_weight[sorted_idx])
    percentile_idx = np.searchsorted(
        weight_cdf, (percentile / 100.) * weight_cdf[-1])
    # in rare cases, percentile_idx equals to len(sorted_idx)
    percentile_idx = np.clip(percentile_idx, 0, len(sorted_idx)-1)
    return array[sorted_idx[percentile_idx]]