File: v1.2.rst

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (944 lines) | stat: -rw-r--r-- 43,921 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
.. include:: _contributors.rst

.. currentmodule:: sklearn

.. _changes_1_2_1:

Version 1.2.1
=============

**January 2023**

Changed models
--------------

The following estimators and functions, when fit with the same data and
parameters, may produce different models from the previous version. This often
occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

- |Fix| The fitted components in :class:`MiniBatchDictionaryLearning` might differ. The
  online updates of the sufficient statistics now properly take the sizes of the batches
  into account.
  :pr:`25354` by :user:`Jérémie du Boisberranger <jeremiedbb>`.

- |Fix| The `categories_` attribute of :class:`preprocessing.OneHotEncoder` now
  always contains an array of `object`s when using predefined categories that
  are strings. Predefined categories encoded as bytes will no longer work
  with `X` encoded as strings. :pr:`25174` by :user:`Tim Head <betatim>`.

Changes impacting all modules
-----------------------------

- |Fix| Support `pandas.Int64` dtyped `y` for classifiers and regressors.
  :pr:`25089` by :user:`Tim Head <betatim>`.

- |Fix| Remove spurious warnings for estimators internally using neighbors search methods.
  :pr:`25129` by :user:`Julien Jerphanion <jjerphan>`.

- |Fix| Fix a bug where the current configuration was ignored in estimators using
  `n_jobs > 1`. This bug was triggered for tasks dispatched by the auxillary
  thread of `joblib` as :func:`sklearn.get_config` used to access an empty thread
  local configuration instead of the configuration visible from the thread where
  `joblib.Parallel` was first called.
  :pr:`25363` by :user:`Guillaume Lemaitre <glemaitre>`.

Changelog
---------

:mod:`sklearn.base`
...................

- |Fix| Fix a regression in `BaseEstimator.__getstate__` that would prevent
  certain estimators to be pickled when using Python 3.11. :pr:`25188` by
  :user:`Benjamin Bossan <BenjaminBossan>`.

- |Fix| Inheriting from :class:`base.TransformerMixin` will only wrap the `transform`
  method if the class defines `transform` itself. :pr:`25295` by `Thomas Fan`_.

:mod:`sklearn.datasets`
.......................

- |Fix| Fix an inconsistency in :func:`datasets.fetch_openml` between liac-arff
  and pandas parser when a leading space is introduced after the delimiter.
  The ARFF specs requires to ignore the leading space.
  :pr:`25312` by :user:`Guillaume Lemaitre <glemaitre>`.

:mod:`sklearn.decomposition`
............................

- |Fix| Fixed a bug in :class:`decomposition.MiniBatchDictionaryLearning` where the
  online updates of the sufficient statistics where not correct when calling
  `partial_fit` on batches of different sizes.
  :pr:`25354` by :user:`Jérémie du Boisberranger <jeremiedbb>`.

- |Fix| :class:`decomposition.DictionaryLearning` better supports readonly NumPy
  arrays. In particular, it better supports large datasets which are memory-mapped
  when it is used with coordinate descent algorithms (i.e. when `fit_algorithm='cd'`).
  :pr:`25172` by :user:`Julien Jerphanion <jjerphan>`.

:mod:`sklearn.ensemble`
.......................

- |Fix| :class:`ensemble.RandomForestClassifier`,
  :class:`ensemble.RandomForestRegressor` :class:`ensemble.ExtraTreesClassifier`
  and :class:`ensemble.ExtraTreesRegressor` now support sparse readonly datasets.
  :pr:`25341` by :user:`Julien Jerphanion <jjerphan>`

:mod:`sklearn.feature_extraction`
.................................

- |Fix| :class:`feature_extraction.FeatureHasher` raises an informative error
  when the input is a list of strings. :pr:`25094` by `Thomas Fan`_.

:mod:`sklearn.linear_model`
...........................

- |Fix| Fix a regression in :class:`linear_model.SGDClassifier` and
  :class:`linear_model.SGDRegressor` that makes them unusable with the
  `verbose` parameter set to a value greater than 0.
  :pr:`25250` by :user:`Jérémie Du Boisberranger <jeremiedbb>`.

:mod:`sklearn.manifold`
.......................

- |Fix| :class:`manifold.TSNE` now works correctly when output type is
  set to pandas :pr:`25370` by :user:`Tim Head <betatim>`.

:mod:`sklearn.model_selection`
..............................

- |Fix| :func:`model_selection.cross_validate` with multimetric scoring in
  case of some failing scorers the non-failing scorers now returns proper
  scores instead of `error_score` values.
  :pr:`23101` by :user:`András Simon <simonandras>` and `Thomas Fan`_.

:mod:`sklearn.neural_network`
.............................

- |Fix| :class:`neural_network.MLPClassifier` and :class:`neural_network.MLPRegressor`
  no longer raise warnings when fitting data with feature names.
  :pr:`24873` by :user:`Tim Head <betatim>`.

:mod:`sklearn.preprocessing`
............................

- |Fix| :meth:`preprocessing.FunctionTransformer.inverse_transform` correctly
  supports DataFrames that are all numerical when `check_inverse=True`.
  :pr:`25274` by `Thomas Fan`_.

- |Fix| :meth:`preprocessing.SplineTransformer.get_feature_names_out` correctly
  returns feature names when `extrapolations="periodic"`. :pr:`25296` by
  `Thomas Fan`_.

:mod:`sklearn.tree`
...................

- |Fix| :class:`tree.DecisionTreeClassifier`, :class:`tree.DecisionTreeRegressor`
  :class:`tree.ExtraTreeClassifier` and :class:`tree.ExtraTreeRegressor`
  now support sparse readonly datasets.
  :pr:`25341` by :user:`Julien Jerphanion <jjerphan>`

:mod:`sklearn.utils`
....................

- |Fix| Restore :func:`utils.check_array`'s behaviour for pandas Series of type
  boolean. The type is maintained, instead of converting to `float64.`
  :pr:`25147` by :user:`Tim Head <betatim>`.

- |API| :func:`utils.fixes.delayed` is deprecated in 1.2.1 and will be removed
  in 1.5. Instead, import :func:`utils.parallel.delayed` and use it in
  conjunction with the newly introduced :func:`utils.parallel.Parallel`
  to ensure proper propagation of the scikit-learn configuration to
  the workers.
  :pr:`25363` by :user:`Guillaume Lemaitre <glemaitre>`.

.. _changes_1_2:

Version 1.2.0
=============

**December 2022**

For a short description of the main highlights of the release, please refer to
:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_2_0.py`.

.. include:: changelog_legend.inc

Changed models
--------------

The following estimators and functions, when fit with the same data and
parameters, may produce different models from the previous version. This often
occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

- |Enhancement| The default `eigen_tol` for :class:`cluster.SpectralClustering`,
  :class:`manifold.SpectralEmbedding`, :func:`cluster.spectral_clustering`,
  and :func:`manifold.spectral_embedding` is now `None` when using the `'amg'`
  or `'lobpcg'` solvers. This change improves numerical stability of the
  solver, but may result in a different model.

- |Enhancement| :class:`linear_model.GammaRegressor`,
  :class:`linear_model.PoissonRegressor` and :class:`linear_model.TweedieRegressor`
  can reach higher precision with the lbfgs solver, in particular when `tol` is set
  to a tiny value. Moreover, `verbose` is now properly propagated to L-BFGS-B.
  :pr:`23619` by :user:`Christian Lorentzen <lorentzenchr>`.

- |Enhancement| The default value for `eps` :func:`metrics.logloss` has changed
  from `1e-15` to `"auto"`. `"auto"` sets `eps` to `np.finfo(y_pred.dtype).eps`.
  :pr:`24354` by :user:`Safiuddin Khaja <Safikh>` and :user:`gsiisg <gsiisg>`.

- |Fix| Make sign of `components_` deterministic in :class:`decomposition.SparsePCA`.
  :pr:`23935` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| The `components_` signs in :class:`decomposition.FastICA` might differ.
  It is now consistent and deterministic with all SVD solvers.
  :pr:`22527` by :user:`Meekail Zain <micky774>` and `Thomas Fan`_.

- |Fix| The condition for early stopping has now been changed in
  :func:`linear_model._sgd_fast._plain_sgd` which is used by
  :class:`linear_model.SGDRegressor` and :class:`linear_model.SGDClassifier`. The old
  condition did not disambiguate between
  training and validation set and had an effect of overscaling the error tolerance.
  This has been fixed in :pr:`23798` by :user:`Harsh Agrawal <Harsh14901>`.

- |Fix| For :class:`model_selection.GridSearchCV` and
  :class:`model_selection.RandomizedSearchCV` ranks corresponding to nan
  scores will all be set to the maximum possible rank.
  :pr:`24543` by :user:`Guillaume Lemaitre <glemaitre>`.

- |API| The default value of `tol` was changed from `1e-3` to `1e-4` for
  :func:`linear_model.ridge_regression`, :class:`linear_model.Ridge` and
  :class:`linear_model.`RidgeClassifier`.
  :pr:`24465` by :user:`Christian Lorentzen <lorentzenchr>`.

Changes impacting all modules
-----------------------------

- |MajorFeature| The `set_output` API has been adopted by all transformers.
  Meta-estimators that contain transformers such as :class:`pipeline.Pipeline`
  or :class:`compose.ColumnTransformer` also define a `set_output`.
  For details, see
  `SLEP018 <https://scikit-learn-enhancement-proposals.readthedocs.io/en/latest/slep018/proposal.html>`__.
  :pr:`23734` and :pr:`24699` by `Thomas Fan`_.

- |Efficiency| Low-level routines for reductions on pairwise distances
  for dense float32 datasets have been refactored. The following functions
  and estimators now benefit from improved performances in terms of hardware
  scalability and speed-ups:

  - :func:`sklearn.metrics.pairwise_distances_argmin`
  - :func:`sklearn.metrics.pairwise_distances_argmin_min`
  - :class:`sklearn.cluster.AffinityPropagation`
  - :class:`sklearn.cluster.Birch`
  - :class:`sklearn.cluster.MeanShift`
  - :class:`sklearn.cluster.OPTICS`
  - :class:`sklearn.cluster.SpectralClustering`
  - :func:`sklearn.feature_selection.mutual_info_regression`
  - :class:`sklearn.neighbors.KNeighborsClassifier`
  - :class:`sklearn.neighbors.KNeighborsRegressor`
  - :class:`sklearn.neighbors.RadiusNeighborsClassifier`
  - :class:`sklearn.neighbors.RadiusNeighborsRegressor`
  - :class:`sklearn.neighbors.LocalOutlierFactor`
  - :class:`sklearn.neighbors.NearestNeighbors`
  - :class:`sklearn.manifold.Isomap`
  - :class:`sklearn.manifold.LocallyLinearEmbedding`
  - :class:`sklearn.manifold.TSNE`
  - :func:`sklearn.manifold.trustworthiness`
  - :class:`sklearn.semi_supervised.LabelPropagation`
  - :class:`sklearn.semi_supervised.LabelSpreading`

  For instance :class:`sklearn.neighbors.NearestNeighbors.kneighbors` and
  :class:`sklearn.neighbors.NearestNeighbors.radius_neighbors`
  can respectively be up to ×20 and ×5 faster than previously on a laptop.

  Moreover, implementations of those two algorithms are now suitable
  for machine with many cores, making them usable for datasets consisting
  of millions of samples.

  :pr:`23865` by :user:`Julien Jerphanion <jjerphan>`.

- |Enhancement| Finiteness checks (detection of NaN and infinite values) in all
  estimators are now significantly more efficient for float32 data by leveraging
  NumPy's SIMD optimized primitives.
  :pr:`23446` by :user:`Meekail Zain <micky774>`

- |Enhancement| Finiteness checks (detection of NaN and infinite values) in all
  estimators are now faster by utilizing a more efficient stop-on-first
  second-pass algorithm.
  :pr:`23197` by :user:`Meekail Zain <micky774>`

- |Enhancement| Support for combinations of dense and sparse datasets pairs
  for all distance metrics and for float32 and float64 datasets has been added
  or has seen its performance improved for the following estimators:

  - :func:`sklearn.metrics.pairwise_distances_argmin`
  - :func:`sklearn.metrics.pairwise_distances_argmin_min`
  - :class:`sklearn.cluster.AffinityPropagation`
  - :class:`sklearn.cluster.Birch`
  - :class:`sklearn.cluster.SpectralClustering`
  - :class:`sklearn.neighbors.KNeighborsClassifier`
  - :class:`sklearn.neighbors.KNeighborsRegressor`
  - :class:`sklearn.neighbors.RadiusNeighborsClassifier`
  - :class:`sklearn.neighbors.RadiusNeighborsRegressor`
  - :class:`sklearn.neighbors.LocalOutlierFactor`
  - :class:`sklearn.neighbors.NearestNeighbors`
  - :class:`sklearn.manifold.Isomap`
  - :class:`sklearn.manifold.TSNE`
  - :func:`sklearn.manifold.trustworthiness`

  :pr:`23604` and :pr:`23585` by :user:`Julien Jerphanion <jjerphan>`,
  :user:`Olivier Grisel <ogrisel>`, and `Thomas Fan`_,
  :pr:`24556` by :user:`Vincent Maladière <Vincent-Maladiere>`.

- |Fix| Systematically check the sha256 digest of dataset tarballs used in code
  examples in the documentation.
  :pr:`24617` by :user:`Olivier Grisel <ogrisel>` and `Thomas Fan`_. Thanks to
  `Sim4n6 <https://huntr.dev/users/sim4n6>`_ for the report.

Changelog
---------

..
    Entries should be grouped by module (in alphabetic order) and prefixed with
    one of the labels: |MajorFeature|, |Feature|, |Efficiency|, |Enhancement|,
    |Fix| or |API| (see whats_new.rst for descriptions).
    Entries should be ordered by those labels (e.g. |Fix| after |Efficiency|).
    Changes not specific to a module should be listed under *Multiple Modules*
    or *Miscellaneous*.
    Entries should end with:
    :pr:`123456` by :user:`Joe Bloggs <joeongithub>`.
    where 123456 is the *pull request* number, not the issue number.

:mod:`sklearn.base`
...................

- |Enhancement| Introduces :class:`base.ClassNamePrefixFeaturesOutMixin` and
  :class:`base.ClassNamePrefixFeaturesOutMixin` mixins that defines
  :term:`get_feature_names_out` for common transformer uses cases.
  :pr:`24688` by `Thomas Fan`_.

:mod:`sklearn.calibration`
..........................

- |API| Rename `base_estimator` to `estimator` in
  :class:`calibration.CalibratedClassifierCV` to improve readability and consistency.
  The parameter `base_estimator` is deprecated and will be removed in 1.4.
  :pr:`22054` by :user:`Kevin Roice <kevroi>`.

:mod:`sklearn.cluster`
......................

- |Efficiency| :class:`cluster.KMeans` with `algorithm="lloyd"` is now faster
  and uses less memory. :pr:`24264` by
  :user:`Vincent Maladiere <Vincent-Maladiere>`.

- |Enhancement| The `predict` and `fit_predict` methods of :class:`cluster.OPTICS` now
  accept sparse data type for input data. :pr:`14736` by :user:`Hunt Zhan <huntzhan>`,
  :pr:`20802` by :user:`Brandon Pokorny <Clickedbigfoot>`,
  and :pr:`22965` by :user:`Meekail Zain <micky774>`.

- |Enhancement| :class:`cluster.Birch` now preserves dtype for `numpy.float32`
  inputs. :pr:`22968` by `Meekail Zain <micky774>`.

- |Enhancement| :class:`cluster.KMeans` and :class:`cluster.MiniBatchKMeans`
  now accept a new `'auto'` option for `n_init` which changes the number of
  random initializations to one when using `init='k-means++'` for efficiency.
  This begins deprecation for the default values of `n_init` in the two classes
  and both will have their defaults changed to `n_init='auto'` in 1.4.
  :pr:`23038` by :user:`Meekail Zain <micky774>`.

- |Enhancement| :class:`cluster.SpectralClustering` and
  :func:`cluster.spectral_clustering` now propogates the `eigen_tol` parameter
  to all choices of `eigen_solver`. Includes a new option `eigen_tol="auto"`
  and begins deprecation to change the default from `eigen_tol=0` to
  `eigen_tol="auto"` in version 1.3.
  :pr:`23210` by :user:`Meekail Zain <micky774>`.

- |Fix| :class:`cluster.KMeans` now supports readonly attributes when predicting.
  :pr:`24258` by `Thomas Fan`_

- |API| The `affinity` attribute is now deprecated for
  :class:`cluster.AgglomerativeClustering` and will be renamed to `metric` in v1.4.
  :pr:`23470` by :user:`Meekail Zain <micky774>`.

:mod:`sklearn.datasets`
.......................

- |Enhancement| Introduce the new parameter `parser` in
  :func:`datasets.fetch_openml`. `parser="pandas"` allows to use the very CPU
  and memory efficient `pandas.read_csv` parser to load dense ARFF
  formatted dataset files. It is possible to pass `parser="liac-arff"`
  to use the old LIAC parser.
  When `parser="auto"`, dense datasets are loaded with "pandas" and sparse
  datasets are loaded with "liac-arff".
  Currently, `parser="liac-arff"` by default and will change to `parser="auto"`
  in version 1.4
  :pr:`21938` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Enhancement| :func:`datasets.dump_svmlight_file` is now accelerated with a
  Cython implementation, providing 2-4x speedups.
  :pr:`23127` by :user:`Meekail Zain <micky774>`

- |Enhancement| Path-like objects, such as those created with pathlib are now
  allowed as paths in :func:`datasets.load_svmlight_file` and
  :func:`datasets.load_svmlight_files`.
  :pr:`19075` by :user:`Carlos Ramos Carreño <vnmabus>`.

- |Fix| Make sure that :func:`datasets.fetch_lfw_people` and
  :func:`datasets.fetch_lfw_pairs` internally crops images based on the
  `slice_` parameter.
  :pr:`24951` by :user:`Guillaume Lemaitre <glemaitre>`.

:mod:`sklearn.decomposition`
............................

- |Efficiency| :func:`decomposition.FastICA.fit` has been optimised w.r.t
  its memory footprint and runtime.
  :pr:`22268` by :user:`MohamedBsh <Bsh>`.

- |Enhancement| :class:`decomposition.SparsePCA` and
  :class:`decomposition.MiniBatchSparsePCA` now implements an `inverse_transform`
  function.
  :pr:`23905` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Enhancement| :class:`decomposition.FastICA` now allows the user to select
  how whitening is performed through the new `whiten_solver` parameter, which
  supports `svd` and `eigh`. `whiten_solver` defaults to `svd` although `eigh`
  may be faster and more memory efficient in cases where
  `num_features > num_samples`.
  :pr:`11860` by :user:`Pierre Ablin <pierreablin>`,
  :pr:`22527` by :user:`Meekail Zain <micky774>` and `Thomas Fan`_.

- |Enhancement| :class:`decomposition.LatentDirichletAllocation` now preserves dtype
  for `numpy.float32` input. :pr:`24528` by :user:`Takeshi Oura <takoika>` and
  :user:`Jérémie du Boisberranger <jeremiedbb>`.

- |Fix| Make sign of `components_` deterministic in :class:`decomposition.SparsePCA`.
  :pr:`23935` by :user:`Guillaume Lemaitre <glemaitre>`.

- |API| The `n_iter` parameter of :class:`decomposition.MiniBatchSparsePCA` is
  deprecated and replaced by the parameters `max_iter`, `tol`, and
  `max_no_improvement` to be consistent with
  :class:`decomposition.MiniBatchDictionaryLearning`. `n_iter` will be removed
  in version 1.3. :pr:`23726` by :user:`Guillaume Lemaitre <glemaitre>`.

- |API| The `n_features_` attribute of
  :class:`decomposition.PCA` is deprecated in favor of
  `n_features_in_` and will be removed in 1.4. :pr:`24421` by
  :user:`Kshitij Mathur <Kshitij68>`.

:mod:`sklearn.discriminant_analysis`
....................................

- |MajorFeature| :class:`discriminant_analysis.LinearDiscriminantAnalysis` now
  supports the `Array API <https://data-apis.org/array-api/latest/>`_ for
  `solver="svd"`. Array API support is considered experimental and might evolve
  without being subjected to our usual rolling deprecation cycle policy. See
  :ref:`array_api` for more details. :pr:`22554` by `Thomas Fan`_.

- |Fix| Validate parameters only in `fit` and not in `__init__`
  for :class:`discriminant_analysis.QuadraticDiscriminantAnalysis`.
  :pr:`24218` by :user:`Stefanie Molin <stefmolin>`.

:mod:`sklearn.ensemble`
.......................

- |MajorFeature| :class:`ensemble.HistGradientBoostingClassifier` and
  :class:`ensemble.HistGradientBoostingRegressor` now support
  interaction constraints via the argument `interaction_cst` of their
  constructors.
  :pr:`21020` by :user:`Christian Lorentzen <lorentzenchr>`.
  Using interaction constraints also makes fitting faster.
  :pr:`24856` by :user:`Christian Lorentzen <lorentzenchr>`.

- |Feature| Adds `class_weight` to :class:`ensemble.HistGradientBoostingClassifier`.
  :pr:`22014` by `Thomas Fan`_.

- |Efficiency| Improve runtime performance of :class:`ensemble.IsolationForest`
  by avoiding data copies. :pr:`23252` by :user:`Zhehao Liu <MaxwellLZH>`.

- |Enhancement| :class:`ensemble.StackingClassifier` now accepts any kind of
  base estimator.
  :pr:`24538` by :user:`Guillem G Subies <GuillemGSubies>`.

- |Enhancement| Make it possible to pass the `categorical_features` parameter
  of :class:`ensemble.HistGradientBoostingClassifier` and
  :class:`ensemble.HistGradientBoostingRegressor` as feature names.
  :pr:`24889` by :user:`Olivier Grisel <ogrisel>`.

- |Enhancement| :class:`ensemble.StackingClassifier` now supports
  multilabel-indicator target
  :pr:`24146` by :user:`Nicolas Peretti <nicoperetti>`,
  :user:`Nestor Navarro <nestornav>`, :user:`Nati Tomattis <natitomattis>`,
  and :user:`Vincent Maladiere <Vincent-Maladiere>`.

- |Enhancement| :class:`ensemble.HistGradientBoostingClassifier` and
  :class:`ensemble.HistGradientBoostingClassifier` now accept their
  `monotonic_cst` parameter to be passed as a dictionary in addition
  to the previously supported array-like format.
  Such dictionary have feature names as keys and one of `-1`, `0`, `1`
  as value to specify monotonicity constraints for each feature.
  :pr:`24855` by :user:`Olivier Grisel <ogrisel>`.

- |Enhancement| Interaction constraints for
  :class:`ensemble.HistGradientBoostingClassifier`
  and :class:`ensemble.HistGradientBoostingRegressor` can now be specified
  as strings for two common cases: "no_interactions" and "pairwise" interactions.
  :pr:`24849` by :user:`Tim Head <betatim>`.

- |Fix| Fixed the issue where :class:`ensemble.AdaBoostClassifier` outputs
  NaN in feature importance when fitted with very small sample weight.
  :pr:`20415` by :user:`Zhehao Liu <MaxwellLZH>`.

- |Fix| :class:`ensemble.HistGradientBoostingClassifier` and
  :class:`ensemble.HistGradientBoostingRegressor` no longer error when predicting
  on categories encoded as negative values and instead consider them a member
  of the "missing category". :pr:`24283` by `Thomas Fan`_.

- |Fix| :class:`ensemble.HistGradientBoostingClassifier` and
  :class:`ensemble.HistGradientBoostingRegressor`, with `verbose>=1`, print detailed
  timing information on computing histograms and finding best splits. The time spent in
  the root node was previously missing and is now included in the printed information.
  :pr:`24894` by :user:`Christian Lorentzen <lorentzenchr>`.

- |API| Rename the constructor parameter `base_estimator` to `estimator` in
  the following classes:
  :class:`ensemble.BaggingClassifier`,
  :class:`ensemble.BaggingRegressor`,
  :class:`ensemble.AdaBoostClassifier`,
  :class:`ensemble.AdaBoostRegressor`.
  `base_estimator` is deprecated in 1.2 and will be removed in 1.4.
  :pr:`23819` by :user:`Adrian Trujillo <trujillo9616>` and
  :user:`Edoardo Abati <EdAbati>`.

- |API| Rename the fitted attribute `base_estimator_` to `estimator_` in
  the following classes:
  :class:`ensemble.BaggingClassifier`,
  :class:`ensemble.BaggingRegressor`,
  :class:`ensemble.AdaBoostClassifier`,
  :class:`ensemble.AdaBoostRegressor`,
  :class:`ensemble.RandomForestClassifier`,
  :class:`ensemble.RandomForestRegressor`,
  :class:`ensemble.ExtraTreesClassifier`,
  :class:`ensemble.ExtraTreesRegressor`,
  :class:`ensemble.RandomTreesEmbedding`,
  :class:`ensemble.IsolationForest`.
  `base_estimator_` is deprecated in 1.2 and will be removed in 1.4.
  :pr:`23819` by :user:`Adrian Trujillo <trujillo9616>` and
  :user:`Edoardo Abati <EdAbati>`.

:mod:`sklearn.feature_selection`
................................

- |Fix| Fix a bug in :func:`feature_selection.mutual_info_regression` and
  :func:`feature_selection.mutual_info_classif`, where the continuous features
  in `X` should be scaled to a unit variance independently if the target `y` is
  continuous or discrete.
  :pr:`24747` by :user:`Guillaume Lemaitre <glemaitre>`

:mod:`sklearn.gaussian_process`
...............................

- |Fix| Fix :class:`gaussian_process.kernels.Matern` gradient computation with
  `nu=0.5` for PyPy (and possibly other non CPython interpreters). :pr:`24245`
  by :user:`Loïc Estève <lesteve>`.

- |Fix| The `fit` method of :class:`gaussian_process.GaussianProcessRegressor`
  will not modify the input X in case a custom kernel is used, with a `diag`
  method that returns part of the input X. :pr:`24405`
  by :user:`Omar Salman <OmarManzoor>`.

:mod:`sklearn.impute`
.....................

- |Enhancement| Added `keep_empty_features` parameter to
  :class:`impute.SimpleImputer`, :class:`impute.KNNImputer` and
  :class:`impute.IterativeImputer`, preventing removal of features
  containing only missing values when transforming.
  :pr:`16695` by :user:`Vitor Santa Rosa <vitorsrg>`.

:mod:`sklearn.inspection`
.........................

- |MajorFeature| Extended :func:`inspection.partial_dependence` and
  :class:`inspection.PartialDependenceDisplay` to handle categorical features.
  :pr:`18298` by :user:`Madhura Jayaratne <madhuracj>` and
  :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| :class:`inspection.DecisionBoundaryDisplay` now raises error if input
  data is not 2-dimensional.
  :pr:`25077` by :user:`Arturo Amor <ArturoAmorQ>`.

:mod:`sklearn.kernel_approximation`
...................................

- |Enhancement| :class:`kernel_approximation.RBFSampler` now preserves
  dtype for `numpy.float32` inputs. :pr:`24317` by `Tim Head <betatim>`.

- |Enhancement| :class:`kernel_approximation.SkewedChi2Sampler` now preserves
  dtype for `numpy.float32` inputs. :pr:`24350` by :user:`Rahil Parikh <rprkh>`.

- |Enhancement| :class:`kernel_approximation.RBFSampler` now accepts
  `'scale'` option for parameter `gamma`.
  :pr:`24755` by :user:`Gleb Levitski <GLevV>`.

:mod:`sklearn.linear_model`
...........................

- |Enhancement| :class:`linear_model.LogisticRegression`,
  :class:`linear_model.LogisticRegressionCV`, :class:`linear_model.GammaRegressor`,
  :class:`linear_model.PoissonRegressor` and :class:`linear_model.TweedieRegressor` got
  a new solver `solver="newton-cholesky"`. This is a 2nd order (Newton) optimisation
  routine that uses a Cholesky decomposition of the hessian matrix.
  When `n_samples >> n_features`, the `"newton-cholesky"` solver has been observed to
  converge both faster and to a higher precision solution than the `"lbfgs"` solver on
  problems with one-hot encoded categorical variables with some rare categorical
  levels.
  :pr:`24637` and :pr:`24767` by :user:`Christian Lorentzen <lorentzenchr>`.

- |Enhancement| :class:`linear_model.GammaRegressor`,
  :class:`linear_model.PoissonRegressor` and :class:`linear_model.TweedieRegressor`
  can reach higher precision with the lbfgs solver, in particular when `tol` is set
  to a tiny value. Moreover, `verbose` is now properly propagated to L-BFGS-B.
  :pr:`23619` by :user:`Christian Lorentzen <lorentzenchr>`.

- |Fix| :class:`linear_model.SGDClassifier` and :class:`linear_model.SGDRegressor` will
  raise an error when all the validation samples have zero sample weight.
  :pr:`23275` by `Zhehao Liu <MaxwellLZH>`.

- |Fix| :class:`linear_model.SGDOneClassSVM` no longer performs parameter
  validation in the constructor. All validation is now handled in `fit()` and
  `partial_fit()`.
  :pr:`24433` by :user:`Yogendrasingh <iofall>`, :user:`Arisa Y. <arisayosh>`
  and :user:`Tim Head <betatim>`.

- |Fix| Fix average loss calculation when early stopping is enabled in
  :class:`linear_model.SGDRegressor` and :class:`linear_model.SGDClassifier`.
  Also updated the condition for early stopping accordingly.
  :pr:`23798` by :user:`Harsh Agrawal <Harsh14901>`.

- |API| The default value for the `solver` parameter in
  :class:`linear_model.QuantileRegressor` will change from `"interior-point"`
  to `"highs"` in version 1.4.
  :pr:`23637` by :user:`Guillaume Lemaitre <glemaitre>`.

- |API| String option `"none"` is deprecated for `penalty` argument
  in :class:`linear_model.LogisticRegression`, and will be removed in version 1.4.
  Use `None` instead. :pr:`23877` by :user:`Zhehao Liu <MaxwellLZH>`.

- |API| The default value of `tol` was changed from `1e-3` to `1e-4` for
  :func:`linear_model.ridge_regression`, :class:`linear_model.Ridge` and
  :class:`linear_model.RidgeClassifier`.
  :pr:`24465` by :user:`Christian Lorentzen <lorentzenchr>`.

:mod:`sklearn.manifold`
.......................

- |Feature| Adds option to use the normalized stress in :class:`manifold.MDS`. This is
  enabled by setting the new `normalize` parameter to `True`.
  :pr:`10168` by :user:`Łukasz Borchmann <Borchmann>`,
  :pr:`12285` by :user:`Matthias Miltenberger <mattmilten>`,
  :pr:`13042` by :user:`Matthieu Parizy <matthieu-pa>`,
  :pr:`18094` by :user:`Roth E Conrad <rotheconrad>` and
  :pr:`22562` by :user:`Meekail Zain <micky774>`.

- |Enhancement| Adds `eigen_tol` parameter to
  :class:`manifold.SpectralEmbedding`. Both :func:`manifold.spectral_embedding`
  and :class:`manifold.SpectralEmbedding` now propogate `eigen_tol` to all
  choices of `eigen_solver`. Includes a new option `eigen_tol="auto"`
  and begins deprecation to change the default from `eigen_tol=0` to
  `eigen_tol="auto"` in version 1.3.
  :pr:`23210` by :user:`Meekail Zain <micky774>`.

- |Enhancement| :class:`manifold.Isomap` now preserves
  dtype for `np.float32` inputs. :pr:`24714` by :user:`Rahil Parikh <rprkh>`.

- |API| Added an `"auto"` option to the `normalized_stress` argument in
  :class:`manifold.MDS` and :func:`manifold.smacof`. Note that
  `normalized_stress` is only valid for non-metric MDS, therefore the `"auto"`
  option enables `normalized_stress` when `metric=False` and disables it when
  `metric=True`. `"auto"` will become the default value foor `normalized_stress`
  in version 1.4.
  :pr:`23834` by :user:`Meekail Zain <micky774>`

:mod:`sklearn.metrics`
......................

- |Feature| :func:`metrics.ConfusionMatrixDisplay.from_estimator`,
  :func:`metrics.ConfusionMatrixDisplay.from_predictions`, and
  :meth:`metrics.ConfusionMatrixDisplay.plot` accepts a `text_kw` parameter which is
  passed to matplotlib's `text` function. :pr:`24051` by `Thomas Fan`_.

- |Feature| :func:`metrics.class_likelihood_ratios` is added to compute the positive and
  negative likelihood ratios derived from the confusion matrix
  of a binary classification problem. :pr:`22518` by
  :user:`Arturo Amor <ArturoAmorQ>`.

- |Feature| Add :class:`metrics.PredictionErrorDisplay` to plot residuals vs
  predicted and actual vs predicted to qualitatively assess the behavior of a
  regressor. The display can be created with the class methods
  :func:`metrics.PredictionErrorDisplay.from_estimator` and
  :func:`metrics.PredictionErrorDisplay.from_predictions`. :pr:`18020` by
  :user:`Guillaume Lemaitre <glemaitre>`.

- |Feature| :func:`metrics.roc_auc_score` now supports micro-averaging
  (`average="micro"`) for the One-vs-Rest multiclass case (`multi_class="ovr"`).
  :pr:`24338` by :user:`Arturo Amor <ArturoAmorQ>`.

- |Enhancement| Adds an `"auto"` option to `eps` in :func:`metrics.logloss`.
  This option will automatically set the `eps` value depending on the data
  type of `y_pred`. In addition, the default value of `eps` is changed from
  `1e-15` to the new `"auto"` option.
  :pr:`24354` by :user:`Safiuddin Khaja <Safikh>` and :user:`gsiisg <gsiisg>`.

- |Fix| Allows `csr_matrix` as input for parameter: `y_true` of
   the :func:`metrics.label_ranking_average_precision_score` metric.
   :pr:`23442` by :user:`Sean Atukorala <ShehanAT>`

- |Fix| :func:`metrics.ndcg_score` will now trigger a warning when the `y_true`
  value contains a negative value. Users may still use negative values, but the
  result may not be between 0 and 1. Starting in v1.4, passing in negative
  values for `y_true` will raise an error.
  :pr:`22710` by :user:`Conroy Trinh <trinhcon>` and
  :pr:`23461` by :user:`Meekail Zain <micky774>`.

- |Fix| :func:`metrics.log_loss` with `eps=0` now returns a correct value of 0 or
  `np.inf` instead of `nan` for predictions at the boundaries (0 or 1). It also accepts
  integer input.
  :pr:`24365` by :user:`Christian Lorentzen <lorentzenchr>`.

- |API| The parameter `sum_over_features` of
  :func:`metrics.pairwise.manhattan_distances` is deprecated and will be removed in 1.4.
  :pr:`24630` by :user:`Rushil Desai <rusdes>`.

:mod:`sklearn.model_selection`
..............................

- |Feature| Added the class :class:`model_selection.LearningCurveDisplay`
  that allows to make easy plotting of learning curves obtained by the function
  :func:`model_selection.learning_curve`.
  :pr:`24084` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| For all `SearchCV` classes and scipy >= 1.10, rank corresponding to a
  nan score is correctly set to the maximum possible rank, rather than
  `np.iinfo(np.int32).min`. :pr:`24141` by :user:`Loïc Estève <lesteve>`.

- |Fix| In both :class:`model_selection.HalvingGridSearchCV` and
  :class:`model_selection.HalvingRandomSearchCV` parameter
  combinations with a NaN score now share the lowest rank.
  :pr:`24539` by :user:`Tim Head <betatim>`.

- |Fix| For :class:`model_selection.GridSearchCV` and
  :class:`model_selection.RandomizedSearchCV` ranks corresponding to nan
  scores will all be set to the maximum possible rank.
  :pr:`24543` by :user:`Guillaume Lemaitre <glemaitre>`.

:mod:`sklearn.multioutput`
..........................

- |Feature| Added boolean `verbose` flag to classes:
  :class:`multioutput.ClassifierChain` and :class:`multioutput.RegressorChain`.
  :pr:`23977` by :user:`Eric Fiegel <efiegel>`,
  :user:`Chiara Marmo <cmarmo>`,
  :user:`Lucy Liu <lucyleeow>`, and
  :user:`Guillaume Lemaitre <glemaitre>`.

:mod:`sklearn.naive_bayes`
..........................

- |Feature| Add methods `predict_joint_log_proba` to all naive Bayes classifiers.
  :pr:`23683` by :user:`Andrey Melnik <avm19>`.

- |Enhancement| A new parameter `force_alpha` was added to
  :class:`naive_bayes.BernoulliNB`, :class:`naive_bayes.ComplementNB`,
  :class:`naive_bayes.CategoricalNB`, and :class:`naive_bayes.MultinomialNB`,
  allowing user to set parameter alpha to a very small number, greater or equal
  0, which was earlier automatically changed to `1e-10` instead.
  :pr:`16747` by :user:`arka204`,
  :pr:`18805` by :user:`hongshaoyang`,
  :pr:`22269` by :user:`Meekail Zain <micky774>`.

:mod:`sklearn.neighbors`
........................

- |Feature| Adds new function :func:`neighbors.sort_graph_by_row_values` to
  sort a CSR sparse graph such that each row is stored with increasing values.
  This is useful to improve efficiency when using precomputed sparse distance
  matrices in a variety of estimators and avoid an `EfficiencyWarning`.
  :pr:`23139` by `Tom Dupre la Tour`_.

- |Efficiency| :class:`neighbors.NearestCentroid` is faster and requires
  less memory as it better leverages CPUs' caches to compute predictions.
  :pr:`24645` by :user:`Olivier Grisel <ogrisel>`.

- |Enhancement| :class:`neighbors.KernelDensity` bandwidth parameter now accepts
  definition using Scott's and Silverman's estimation methods.
  :pr:`10468` by :user:`Ruben <icfly2>` and :pr:`22993` by
  :user:`Jovan Stojanovic <jovan-stojanovic>`.

- |Enhancement| :class:`neighbors.NeighborsBase` now accepts
  Minkowski semi-metric (i.e. when :math:`0 < p < 1` for
  `metric="minkowski"`) for `algorithm="auto"` or `algorithm="brute"`.
  :pr:`24750` by :user:`Rudresh Veerkhare <RudreshVeerkhare>`

- |Fix| :class:`neighbors.NearestCentroid` now raises an informative error message at fit-time
  instead of failing with a low-level error message at predict-time.
  :pr:`23874` by :user:`Juan Gomez <2357juan>`.

- |Fix| Set `n_jobs=None` by default (instead of `1`) for
  :class:`neighbors.KNeighborsTransformer` and
  :class:`neighbors.RadiusNeighborsTransformer`.
  :pr:`24075` by :user:`Valentin Laurent <Valentin-Laurent>`.

- |Enhancement| :class:`neighbors.LocalOutlierFactor` now preserves
  dtype for `numpy.float32` inputs.
  :pr:`22665` by :user:`Julien Jerphanion <jjerphan>`.

:mod:`sklearn.neural_network`
.............................

- |Fix| :class:`neural_network.MLPClassifier` and
  :class:`neural_network.MLPRegressor` always expose the parameters `best_loss_`,
  `validation_scores_`, and `best_validation_score_`. `best_loss_` is set to
  `None` when `early_stopping=True`, while `validation_scores_` and
  `best_validation_score_` are set to `None` when `early_stopping=False`.
  :pr:`24683` by :user:`Guillaume Lemaitre <glemaitre>`.

:mod:`sklearn.pipeline`
.......................

- |Enhancement| :meth:`pipeline.FeatureUnion.get_feature_names_out` can now
  be used when one of the transformers in the :class:`pipeline.FeatureUnion` is
  `"passthrough"`. :pr:`24058` by :user:`Diederik Perdok <diederikwp>`

- |Enhancement| The :class:`pipeline.FeatureUnion` class now has a `named_transformers`
  attribute for accessing transformers by name.
  :pr:`20331` by :user:`Christopher Flynn <crflynn>`.

:mod:`sklearn.preprocessing`
............................

- |Enhancement| :class:`preprocessing.FunctionTransformer` will always try to set
  `n_features_in_` and `feature_names_in_` regardless of the `validate` parameter.
  :pr:`23993` by `Thomas Fan`_.

- |Fix| :class:`preprocessing.LabelEncoder` correctly encodes NaNs in `transform`.
  :pr:`22629` by `Thomas Fan`_.

- |API| The `sparse` parameter of :class:`preprocessing.OneHotEncoder`
  is now deprecated and will be removed in version 1.4. Use `sparse_output` instead.
  :pr:`24412` by :user:`Rushil Desai <rusdes>`.

:mod:`sklearn.svm`
..................

- |API| The `class_weight_` attribute is now deprecated for
  :class:`svm.NuSVR`, :class:`svm.SVR`, :class:`svm.OneClassSVM`.
  :pr:`22898` by :user:`Meekail Zain <micky774>`.

:mod:`sklearn.tree`
...................

- |Enhancement| :func:`tree.plot_tree`, :func:`tree.export_graphviz` now uses
  a lower case `x[i]` to represent feature `i`. :pr:`23480` by `Thomas Fan`_.

:mod:`sklearn.utils`
....................

- |Feature| A new module exposes development tools to discover estimators (i.e.
  :func:`utils.discovery.all_estimators`), displays (i.e.
  :func:`utils.discovery.all_displays`) and functions (i.e.
  :func:`utils.discovery.all_functions`) in scikit-learn.
  :pr:`21469` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Enhancement| :func:`utils.extmath.randomized_svd` now accepts an argument,
  `lapack_svd_driver`, to specify the lapack driver used in the internal
  deterministic SVD used by the randomized SVD algorithm.
  :pr:`20617` by :user:`Srinath Kailasa <skailasa>`

- |Enhancement| :func:`utils.validation.column_or_1d` now accepts a `dtype`
  parameter to specific `y`'s dtype. :pr:`22629` by `Thomas Fan`_.

- |Enhancement| :func:`utils.extmath.cartesian` now accepts arrays with different
  `dtype` and will cast the ouptut to the most permissive `dtype`.
  :pr:`25067` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| :func:`utils.multiclass.type_of_target` now properly handles sparse matrices.
  :pr:`14862` by :user:`Léonard Binet <leonardbinet>`.

- |Fix| HTML representation no longer errors when an estimator class is a value in
  `get_params`. :pr:`24512` by `Thomas Fan`_.

- |Fix| :func:`utils.estimator_checks.check_estimator` now takes into account
  the `requires_positive_X` tag correctly. :pr:`24667` by `Thomas Fan`_.

- |Fix| :func:`utils.check_array` now supports Pandas Series with `pd.NA`
  by raising a better error message or returning a compatible `ndarray`.
  :pr:`25080` by `Thomas Fan`_.

- |API| The extra keyword parameters of :func:`utils.extmath.density` are deprecated
  and will be removed in 1.4.
  :pr:`24523` by :user:`Mia Bajic <clytaemnestra>`.

Code and Documentation Contributors
-----------------------------------

Thanks to everyone who has contributed to the maintenance and improvement of
the project since version 1.1, including:

2357juan, 3lLobo, Adam J. Stewart, Adam Li, Aditya Anulekh, Adrin Jalali, Aiko,
Akshita Prasanth, Alessandro Miola, Alex, Alexandr, Alexandre Perez-Lebel, aman
kumar, Amit Bera, Andreas Grivas, Andreas Mueller, András Simon,
angela-maennel, Aniket Shirsat, Antony Lee, anupam, Apostolos Tsetoglou,
Aravindh R, Artur Hermano, Arturo Amor, Ashwin Mathur, avm19, b0rxington, Badr
MOUFAD, Bardiya Ak, Bartłomiej Gońda, BdeGraaff, Benjamin Bossan, Benjamin
Carter, berkecanrizai, Bernd Fritzke, Bhoomika, Biswaroop Mitra, Brandon TH
Chen, Brett Cannon, Bsh, carlo, Carlos Ramos Carreño, ceh, chalulu, Charles
Zablit, Chiara Marmo, Christian Lorentzen, Christian Ritter, christianwaldmann,
Christine P. Chai, Claudio Salvatore Arcidiacono, Clément Verrier,
crispinlogan, Da-Lan, DanGonite57, Daniela Fernandes, DanielGaerber, darioka,
Darren Nguyen, David Gilbertson, David Poznik, david-cortes, Denis, Dev Khant,
Dhanshree Arora, Diadochokinetic, diederikwp, Dimitri Papadopoulos Orfanos,
drewhogg, Duarte OC, Dwight Lindquist, Eden Brekke, Edoardo Abati, Eleanore
Denies, EliaSchiavon, ErmolaevPA, Fabrizio Damicelli, fcharras, Flynn,
francesco-tuveri, Franck Charras, ftorres16, Gael Varoquaux, Geevarghese
George, GeorgiaMayDay, Gianr Lazz, Gleb Levitski, Glòria Macià Muñoz, Guillaume
Lemaitre, Guillem García Subies, Guitared, gunesbayir, Hansin Ahuja, Hao Chun
Chang, Harsh Agrawal, harshit5674, hasan-yaman, Henry Sorsky, henrymooresc,
Hristo Vrigazov, htsedebenham, humahn, i-aki-y, Ido M, Iglesys, Iliya Zhechev,
Irene, Ivan Sedykh, ivanllt, jakirkham, Jason G, Jiten Sidhpura, jkarolczak,
John Koumentis, John P, John Pangas, johnthagen, Jordan Fleming, Joshua Choo
Yun Keat, Jovan Stojanovic, João David, Juan Carlos Alfaro Jiménez, Juan Felipe
Arias, juanfe88, Julien Jerphanion, jygerardy, Jérémie du Boisberranger,
Kanishk Sachdev, Kanissh, Kendall, Kenneth Prabakaran, Kento Nozawa, kernc,
Kevin Roice, Kian Eliasi, Kilian Kluge, Kilian Lieret, Kirandevraj, Kraig,
krishna kumar, krishna vamsi, Kshitij Kapadni, Kshitij Mathur, Lauren Burke,
lingyi1110, Lisa Casino, Loic Esteve, Luciano Mantovani, Lucy Liu, Léonard
Binet, m. bou, Maascha, Madhura Jayaratne, madinak, Maksym, Malte S. Kurz,
Mansi Agrawal, Marco Edward Gorelli, Marco Wurps, Maren Westermann, Maria
Telenczuk, martin-kokos, mathurinm, mauroantonioserrano, Maxi Marufo, Maxim
Smolskiy, Maxwell, Meekail Zain, Mehgarg, mehmetcanakbay, Mia Bajić, Michael
Flaks, Michael Hornstein, Michel de Ruiter, Michelle Paradis, Misa Ogura,
Moritz Wilksch, mrastgoo, Naipawat Poolsawat, Naoise Holohan, Nass, Nathan
Jacobi, Nguyễn Văn Diễn, Nihal Thukarama Rao, Nikita Jare, Nima Sarajpoor,
nima10khodaveisi, nitinramvelraj, Nwanna-Joseph, Nymark Kho, o-holman, Olivier
Grisel, Olle Lukowski, Omar Hassoun, Omar Salman, osman tamer, Oyindamola
Olatunji, PAB, Pandata, Paulo Sergio  Soares, Petar Mlinarić, Peter Jansson,
Peter Steinbach, Philipp Jung, Piet Brömmel, priyam kakati, puhuk, Rachel
Freeland, Rachit Keerti Das, Rafal Wojdyla, Rahil Parikh, ram vikram singh,
Ravi Makhija, Rehan Guha, Reshama Shaikh, Richard Klima, Rob Crockett, Robert
Hommes, Robert Juergens, Robin Lenz, Rocco Meli, Roman4oo, Ross Barnowski,
Rowan Mankoo, Rudresh Veerkhare, Rushil Desai, Sabri Monaf Sabri, Safikh,
Safiuddin Khaja, Salahuddin, Sam Adam Day, Sandra Yojana Meneses, Sandro
Ephrem, Sangam, SangamSwadik, SarahRemus, SavkoMax, Scott Gigante, Scott
Gustafson, Sean Atukorala, sec65, SELEE, seljaks, Shane, shellyfung, Shinsuke
Mori, Shoaib Khan, Shogo Hida, Shrankhla Srivastava, Shuangchi He, Simon,
Srinath Kailasa, Stefanie Molin, stellalin7, Steve Schmerler, Steven Van
Vaerenbergh, Stéphane Collot, Sven Stehle, the-syd-sre, TheDevPanda, Thomas
Bonald, Thomas Germer, Thomas J. Fan, Ti-Ion, Tim Head, Timofei Kornev,
toastedyeast, Tobias Pitters, Tom Dupré la Tour, Tom Mathews, Tom McTiernan,
tspeng, Tyler Egashira, Valentin Laurent, Varun Jain, Vera Komeyer, Vicente
Reyes-Puerta, Vincent M, Vishal, wattai, wchathura, WEN Hao, x110, Xiao Yuan,
Xunius, yanhong-zhao-ef, Z Adil Khwaja