1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
"""
========================================
Comparison of Calibration of Classifiers
========================================
Well calibrated classifiers are probabilistic classifiers for which the output
of :term:`predict_proba` can be directly interpreted as a confidence level.
For instance, a well calibrated (binary) classifier should classify the samples
such that for the samples to which it gave a :term:`predict_proba` value close
to 0.8, approximately 80% actually belong to the positive class.
In this example we will compare the calibration of four different
models: :ref:`Logistic_regression`, :ref:`gaussian_naive_bayes`,
:ref:`Random Forest Classifier <forest>` and :ref:`Linear SVM
<svm_classification>`.
"""
# %%
# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD 3 clause.
#
# Dataset
# -------
#
# We will use a synthetic binary classification dataset with 100,000 samples
# and 20 features. Of the 20 features, only 2 are informative, 2 are
# redundant (random combinations of the informative features) and the
# remaining 16 are uninformative (random numbers). Of the 100,000 samples,
# 100 will be used for model fitting and the remaining for testing.
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
X, y = make_classification(
n_samples=100_000, n_features=20, n_informative=2, n_redundant=2, random_state=42
)
train_samples = 100 # Samples used for training the models
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
shuffle=False,
test_size=100_000 - train_samples,
)
# %%
# Calibration curves
# ------------------
#
# Below, we train each of the four models with the small training dataset, then
# plot calibration curves (also known as reliability diagrams) using
# predicted probabilities of the test dataset. Calibration curves are created
# by binning predicted probabilities, then plotting the mean predicted
# probability in each bin against the observed frequency ('fraction of
# positives'). Below the calibration curve, we plot a histogram showing
# the distribution of the predicted probabilities or more specifically,
# the number of samples in each predicted probability bin.
import numpy as np
from sklearn.svm import LinearSVC
class NaivelyCalibratedLinearSVC(LinearSVC):
"""LinearSVC with `predict_proba` method that naively scales
`decision_function` output."""
def fit(self, X, y):
super().fit(X, y)
df = self.decision_function(X)
self.df_min_ = df.min()
self.df_max_ = df.max()
def predict_proba(self, X):
"""Min-max scale output of `decision_function` to [0,1]."""
df = self.decision_function(X)
calibrated_df = (df - self.df_min_) / (self.df_max_ - self.df_min_)
proba_pos_class = np.clip(calibrated_df, 0, 1)
proba_neg_class = 1 - proba_pos_class
proba = np.c_[proba_neg_class, proba_pos_class]
return proba
# %%
from sklearn.calibration import CalibrationDisplay
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
# Create classifiers
lr = LogisticRegression()
gnb = GaussianNB()
svc = NaivelyCalibratedLinearSVC(C=1.0)
rfc = RandomForestClassifier()
clf_list = [
(lr, "Logistic"),
(gnb, "Naive Bayes"),
(svc, "SVC"),
(rfc, "Random forest"),
]
# %%
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
fig = plt.figure(figsize=(10, 10))
gs = GridSpec(4, 2)
colors = plt.cm.get_cmap("Dark2")
ax_calibration_curve = fig.add_subplot(gs[:2, :2])
calibration_displays = {}
markers = ["^", "v", "s", "o"]
for i, (clf, name) in enumerate(clf_list):
clf.fit(X_train, y_train)
display = CalibrationDisplay.from_estimator(
clf,
X_test,
y_test,
n_bins=10,
name=name,
ax=ax_calibration_curve,
color=colors(i),
marker=markers[i],
)
calibration_displays[name] = display
ax_calibration_curve.grid()
ax_calibration_curve.set_title("Calibration plots")
# Add histogram
grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)]
for i, (_, name) in enumerate(clf_list):
row, col = grid_positions[i]
ax = fig.add_subplot(gs[row, col])
ax.hist(
calibration_displays[name].y_prob,
range=(0, 1),
bins=10,
label=name,
color=colors(i),
)
ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count")
plt.tight_layout()
plt.show()
# %%
# :class:`~sklearn.linear_model.LogisticRegression` returns well calibrated
# predictions as it directly optimizes log-loss. In contrast, the other methods
# return biased probabilities, with different biases for each method:
#
# * :class:`~sklearn.naive_bayes.GaussianNB` tends to push
# probabilities to 0 or 1 (see histogram). This is mainly
# because the naive Bayes equation only provides correct estimate of
# probabilities when the assumption that features are conditionally
# independent holds [2]_. However, features tend to be positively correlated
# and is the case with this dataset, which contains 2 features
# generated as random linear combinations of the informative features. These
# correlated features are effectively being 'counted twice', resulting in
# pushing the predicted probabilities towards 0 and 1 [3]_.
#
# * :class:`~sklearn.ensemble.RandomForestClassifier` shows the opposite
# behavior: the histograms show peaks at approx. 0.2 and 0.9 probability,
# while probabilities close to 0 or 1 are very rare. An explanation for this
# is given by Niculescu-Mizil and Caruana [1]_: "Methods such as bagging and
# random forests that average predictions from a base set of models can have
# difficulty making predictions near 0 and 1 because variance in the
# underlying base models will bias predictions that should be near zero or
# one away from these values. Because predictions are restricted to the
# interval [0,1], errors caused by variance tend to be one- sided near zero
# and one. For example, if a model should predict p = 0 for a case, the only
# way bagging can achieve this is if all bagged trees predict zero. If we add
# noise to the trees that bagging is averaging over, this noise will cause
# some trees to predict values larger than 0 for this case, thus moving the
# average prediction of the bagged ensemble away from 0. We observe this
# effect most strongly with random forests because the base-level trees
# trained with random forests have relatively high variance due to feature
# subsetting." As a result, the calibration curve shows a characteristic
# sigmoid shape, indicating that the classifier is under-confident
# and could return probabilities closer to 0 or 1.
#
# * To show the performance of :class:`~sklearn.svm.LinearSVC`, we naively
# scale the output of the :term:`decision_function` into [0, 1] by applying
# min-max scaling, since SVC does not output probabilities by default.
# :class:`~sklearn.svm.LinearSVC` shows an
# even more sigmoid curve than the
# :class:`~sklearn.ensemble.RandomForestClassifier`, which is typical for
# maximum-margin methods [1]_ as they focus on difficult to classify samples
# that are close to the decision boundary (the support vectors).
#
# References
# ----------
#
# .. [1] `Predicting Good Probabilities with Supervised Learning
# <https://dl.acm.org/doi/pdf/10.1145/1102351.1102430>`_,
# A. Niculescu-Mizil & R. Caruana, ICML 2005
# .. [2] `Beyond independence: Conditions for the optimality of the simple
# bayesian classifier
# <https://www.ics.uci.edu/~pazzani/Publications/mlc96-pedro.pdf>`_
# Domingos, P., & Pazzani, M., Proc. 13th Intl. Conf. Machine Learning.
# 1996.
# .. [3] `Obtaining calibrated probability estimates from decision trees and
# naive Bayesian classifiers
# <https://citeseerx.ist.psu.edu/doc_view/pid/4f67a122ec3723f08ad5cbefecad119b432b3304>`_
# Zadrozny, Bianca, and Charles Elkan. Icml. Vol. 1. 2001.
|