File: plot_iris_dataset.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (76 lines) | stat: -rw-r--r-- 2,053 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding: utf-8 -*-
"""
=========================================================
The Iris Dataset
=========================================================
This data sets consists of 3 different types of irises'
(Setosa, Versicolour, and Virginica) petal and sepal
length, stored in a 150x4 numpy.ndarray

The rows being the samples and the columns being:
Sepal Length, Sepal Width, Petal Length and Petal Width.

The below plot uses the first two features.
See `here <https://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more
information on this dataset.

"""

# Code source: Gaƫl Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import matplotlib.pyplot as plt

# unused but required import for doing 3d projections with matplotlib < 3.2
import mpl_toolkits.mplot3d  # noqa: F401

from sklearn import datasets
from sklearn.decomposition import PCA

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2]  # we only take the first two features.
y = iris.target

x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5

plt.figure(2, figsize=(8, 6))
plt.clf()

# Plot the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1, edgecolor="k")
plt.xlabel("Sepal length")
plt.ylabel("Sepal width")

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())

# To getter a better understanding of interaction of the dimensions
# plot the first three PCA dimensions
fig = plt.figure(1, figsize=(8, 6))
ax = fig.add_subplot(111, projection="3d", elev=-150, azim=110)

X_reduced = PCA(n_components=3).fit_transform(iris.data)
ax.scatter(
    X_reduced[:, 0],
    X_reduced[:, 1],
    X_reduced[:, 2],
    c=y,
    cmap=plt.cm.Set1,
    edgecolor="k",
    s=40,
)

ax.set_title("First three PCA directions")
ax.set_xlabel("1st eigenvector")
ax.xaxis.set_ticklabels([])
ax.set_ylabel("2nd eigenvector")
ax.yaxis.set_ticklabels([])
ax.set_zlabel("3rd eigenvector")
ax.zaxis.set_ticklabels([])

plt.show()