File: plot_grid_search_text_feature_extraction.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (265 lines) | stat: -rw-r--r-- 9,260 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""
==========================================================
Sample pipeline for text feature extraction and evaluation
==========================================================

The dataset used in this example is :ref:`20newsgroups_dataset` which will be
automatically downloaded, cached and reused for the document classification
example.

In this example, we tune the hyperparameters of a particular classifier using a
:class:`~sklearn.model_selection.RandomizedSearchCV`. For a demo on the
performance of some other classifiers, see the
:ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
notebook.
"""

# Author: Olivier Grisel <olivier.grisel@ensta.org>
#         Peter Prettenhofer <peter.prettenhofer@gmail.com>
#         Mathieu Blondel <mathieu@mblondel.org>
#         Arturo Amor <david-arturo.amor-quiroz@inria.fr>
# License: BSD 3 clause

# %%
# Data loading
# ------------
# We load two categories from the training set. You can adjust the number of
# categories by adding their names to the list or setting `categories=None` when
# calling the dataset loader :func:`~sklearn.datasets.fetch20newsgroups` to get
# the 20 of them.

from sklearn.datasets import fetch_20newsgroups

categories = [
    "alt.atheism",
    "talk.religion.misc",
]

data_train = fetch_20newsgroups(
    subset="train",
    categories=categories,
    shuffle=True,
    random_state=42,
    remove=("headers", "footers", "quotes"),
)

data_test = fetch_20newsgroups(
    subset="test",
    categories=categories,
    shuffle=True,
    random_state=42,
    remove=("headers", "footers", "quotes"),
)

print(f"Loading 20 newsgroups dataset for {len(data_train.target_names)} categories:")
print(data_train.target_names)
print(f"{len(data_train.data)} documents")

# %%
# Pipeline with hyperparameter tuning
# -----------------------------------
#
# We define a pipeline combining a text feature vectorizer with a simple
# classifier yet effective for text classification.

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import ComplementNB
from sklearn.pipeline import Pipeline

pipeline = Pipeline(
    [
        ("vect", TfidfVectorizer()),
        ("clf", ComplementNB()),
    ]
)
pipeline

# %%
# We define a grid of hyperparameters to be explored by the
# :class:`~sklearn.model_selection.RandomizedSearchCV`. Using a
# :class:`~sklearn.model_selection.GridSearchCV` instead would explore all the
# possible combinations on the grid, which can be costly to compute, whereas the
# parameter `n_iter` of the :class:`~sklearn.model_selection.RandomizedSearchCV`
# controls the number of different random combination that are evaluated. Notice
# that setting `n_iter` larger than the number of possible combinations in a
# grid would lead to repeating already-explored combinations. We search for the
# best parameter combination for both the feature extraction (`vect__`) and the
# classifier (`clf__`).

import numpy as np

parameter_grid = {
    "vect__max_df": (0.2, 0.4, 0.6, 0.8, 1.0),
    "vect__min_df": (1, 3, 5, 10),
    "vect__ngram_range": ((1, 1), (1, 2)),  # unigrams or bigrams
    "vect__norm": ("l1", "l2"),
    "clf__alpha": np.logspace(-6, 6, 13),
}

# %%
# In this case `n_iter=40` is not an exhaustive search of the hyperparameters'
# grid. In practice it would be interesting to increase the parameter `n_iter`
# to get a more informative analysis. As a consequence, the computional time
# increases. We can reduce it by taking advantage of the parallelisation over
# the parameter combinations evaluation by increasing the number of CPUs used
# via the parameter `n_jobs`.

from pprint import pprint
from sklearn.model_selection import RandomizedSearchCV

random_search = RandomizedSearchCV(
    estimator=pipeline,
    param_distributions=parameter_grid,
    n_iter=40,
    random_state=0,
    n_jobs=2,
    verbose=1,
)

print("Performing grid search...")
print("Hyperparameters to be evaluated:")
pprint(parameter_grid)

# %%
from time import time

t0 = time()
random_search.fit(data_train.data, data_train.target)
print(f"Done in {time() - t0:.3f}s")

# %%
print("Best parameters combination found:")
best_parameters = random_search.best_estimator_.get_params()
for param_name in sorted(parameter_grid.keys()):
    print(f"{param_name}: {best_parameters[param_name]}")

# %%
test_accuracy = random_search.score(data_test.data, data_test.target)
print(
    "Accuracy of the best parameters using the inner CV of "
    f"the random search: {random_search.best_score_:.3f}"
)
print(f"Accuracy on test set: {test_accuracy:.3f}")

# %%
# The prefixes `vect` and `clf` are required to avoid possible ambiguities in
# the pipeline, but are not necessary for visualizing the results. Because of
# this, we define a function that will rename the tuned hyperparameters and
# improve the readability.

import pandas as pd


def shorten_param(param_name):
    """Remove components' prefixes in param_name."""
    if "__" in param_name:
        return param_name.rsplit("__", 1)[1]
    return param_name


cv_results = pd.DataFrame(random_search.cv_results_)
cv_results = cv_results.rename(shorten_param, axis=1)

# %%
# We can use a `plotly.express.scatter
# <https://plotly.com/python-api-reference/generated/plotly.express.scatter.html>`_
# to visualize the trade-off between scoring time and mean test score (i.e. "CV
# score"). Passing the cursor over a given point displays the corresponding
# parameters. Error bars correspond to one standard deviation as computed in the
# different folds of the cross-validation.

import plotly.express as px

param_names = [shorten_param(name) for name in parameter_grid.keys()]
labels = {
    "mean_score_time": "CV Score time (s)",
    "mean_test_score": "CV score (accuracy)",
}
fig = px.scatter(
    cv_results,
    x="mean_score_time",
    y="mean_test_score",
    error_x="std_score_time",
    error_y="std_test_score",
    hover_data=param_names,
    labels=labels,
)
fig.update_layout(
    title={
        "text": "trade-off between scoring time and mean test score",
        "y": 0.95,
        "x": 0.5,
        "xanchor": "center",
        "yanchor": "top",
    }
)
fig

# %%
# Notice that the cluster of models in the upper-left corner of the plot have
# the best trade-off between accuracy and scoring time. In this case, using
# bigrams increases the required scoring time without improving considerably the
# accuracy of the pipeline.
#
# .. note:: For more information on how to customize an automated tuning to
#    maximize score and minimize scoring time, see the example notebook
#    :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py`.
#
# We can also use a `plotly.express.parallel_coordinates
# <https://plotly.com/python-api-reference/generated/plotly.express.parallel_coordinates.html>`_
# to further visualize the mean test score as a function of the tuned
# hyperparameters. This helps finding interactions between more than two
# hyperparameters and provide intuition on their relevance for improving the
# performance of a pipeline.
#
# We apply a `math.log10` transformation on the `alpha` axis to spread the
# active range and improve the readability of the plot. A value :math:`x` on
# said axis is to be understood as :math:`10^x`.

import math

column_results = param_names + ["mean_test_score", "mean_score_time"]

transform_funcs = dict.fromkeys(column_results, lambda x: x)
# Using a logarithmic scale for alpha
transform_funcs["alpha"] = math.log10
# L1 norms are mapped to index 1, and L2 norms to index 2
transform_funcs["norm"] = lambda x: 2 if x == "l2" else 1
# Unigrams are mapped to index 1 and bigrams to index 2
transform_funcs["ngram_range"] = lambda x: x[1]

fig = px.parallel_coordinates(
    cv_results[column_results].apply(transform_funcs),
    color="mean_test_score",
    color_continuous_scale=px.colors.sequential.Viridis_r,
    labels=labels,
)
fig.update_layout(
    title={
        "text": "Parallel coordinates plot of text classifier pipeline",
        "y": 0.99,
        "x": 0.5,
        "xanchor": "center",
        "yanchor": "top",
    }
)
fig

# %%
# The parallel coordinates plot displays the values of the hyperparameters on
# different columns while the performance metric is color coded. It is possible
# to select a range of results by clicking and holding on any axis of the
# parallel coordinate plot. You can then slide (move) the range selection and
# cross two selections to see the intersections. You can undo a selection by
# clicking once again on the same axis.
#
# In particular for this hyperparameter search, it is interesting to notice that
# the top performing models do not seem to depend on the regularization `norm`,
# but they do depend on a trade-off between `max_df`, `min_df` and the
# regularization strength `alpha`. The reason is that including noisy features
# (i.e. `max_df` close to :math:`1.0` or `min_df` close to :math:`0`) tend to
# overfit and therefore require a stronger regularization to compensate. Having
# less features require less regularization and less scoring time.
#
# The best accuracy scores are obtained when `alpha` is between :math:`10^{-6}`
# and :math:`10^0`, regardless of the hyperparameter `norm`.