File: plot_document_clustering.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (450 lines) | stat: -rw-r--r-- 17,570 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
"""
=======================================
Clustering text documents using k-means
=======================================

This is an example showing how the scikit-learn API can be used to cluster
documents by topics using a `Bag of Words approach
<https://en.wikipedia.org/wiki/Bag-of-words_model>`_.

Two algorithms are demoed: :class:`~sklearn.cluster.KMeans` and its more
scalable variant, :class:`~sklearn.cluster.MiniBatchKMeans`. Additionally,
latent semantic analysis is used to reduce dimensionality and discover latent
patterns in the data.

This example uses two different text vectorizers: a
:class:`~sklearn.feature_extraction.text.TfidfVectorizer` and a
:class:`~sklearn.feature_extraction.text.HashingVectorizer`. See the example
notebook :ref:`sphx_glr_auto_examples_text_plot_hashing_vs_dict_vectorizer.py`
for more information on vectorizers and a comparison of their processing times.

For document analysis via a supervised learning approach, see the example script
:ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`.

"""

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#         Lars Buitinck
#         Olivier Grisel <olivier.grisel@ensta.org>
#         Arturo Amor <david-arturo.amor-quiroz@inria.fr>
# License: BSD 3 clause

# %%
# Loading text data
# =================
#
# We load data from :ref:`20newsgroups_dataset`, which comprises around 18,000
# newsgroups posts on 20 topics. For illustrative purposes and to reduce the
# computational cost, we select a subset of 4 topics only accounting for around
# 3,400 documents. See the example
# :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
# to gain intuition on the overlap of such topics.
#
# Notice that, by default, the text samples contain some message metadata such
# as `"headers"`, `"footers"` (signatures) and `"quotes"` to other posts. We use
# the `remove` parameter from :func:`~sklearn.datasets.fetch_20newsgroups` to
# strip those features and have a more sensible clustering problem.

import numpy as np
from sklearn.datasets import fetch_20newsgroups

categories = [
    "alt.atheism",
    "talk.religion.misc",
    "comp.graphics",
    "sci.space",
]

dataset = fetch_20newsgroups(
    remove=("headers", "footers", "quotes"),
    subset="all",
    categories=categories,
    shuffle=True,
    random_state=42,
)

labels = dataset.target
unique_labels, category_sizes = np.unique(labels, return_counts=True)
true_k = unique_labels.shape[0]

print(f"{len(dataset.data)} documents - {true_k} categories")

# %%
# Quantifying the quality of clustering results
# =============================================
#
# In this section we define a function to score different clustering pipelines
# using several metrics.
#
# Clustering algorithms are fundamentally unsupervised learning methods.
# However, since we happen to have class labels for this specific dataset, it is
# possible to use evaluation metrics that leverage this "supervised" ground
# truth information to quantify the quality of the resulting clusters. Examples
# of such metrics are the following:
#
# - homogeneity, which quantifies how much clusters contain only members of a
#   single class;
#
# - completeness, which quantifies how much members of a given class are
#   assigned to the same clusters;
#
# - V-measure, the harmonic mean of completeness and homogeneity;
#
# - Rand-Index, which measures how frequently pairs of data points are grouped
#   consistently according to the result of the clustering algorithm and the
#   ground truth class assignment;
#
# - Adjusted Rand-Index, a chance-adjusted Rand-Index such that random cluster
#   assignment have an ARI of 0.0 in expectation.
#
# If the ground truth labels are not known, evaluation can only be performed
# using the model results itself. In that case, the Silhouette Coefficient comes
# in handy.
#
# For more reference, see :ref:`clustering_evaluation`.

from collections import defaultdict
from sklearn import metrics
from time import time

evaluations = []
evaluations_std = []


def fit_and_evaluate(km, X, name=None, n_runs=5):
    name = km.__class__.__name__ if name is None else name

    train_times = []
    scores = defaultdict(list)
    for seed in range(n_runs):
        km.set_params(random_state=seed)
        t0 = time()
        km.fit(X)
        train_times.append(time() - t0)
        scores["Homogeneity"].append(metrics.homogeneity_score(labels, km.labels_))
        scores["Completeness"].append(metrics.completeness_score(labels, km.labels_))
        scores["V-measure"].append(metrics.v_measure_score(labels, km.labels_))
        scores["Adjusted Rand-Index"].append(
            metrics.adjusted_rand_score(labels, km.labels_)
        )
        scores["Silhouette Coefficient"].append(
            metrics.silhouette_score(X, km.labels_, sample_size=2000)
        )
    train_times = np.asarray(train_times)

    print(f"clustering done in {train_times.mean():.2f} ± {train_times.std():.2f} s ")
    evaluation = {
        "estimator": name,
        "train_time": train_times.mean(),
    }
    evaluation_std = {
        "estimator": name,
        "train_time": train_times.std(),
    }
    for score_name, score_values in scores.items():
        mean_score, std_score = np.mean(score_values), np.std(score_values)
        print(f"{score_name}: {mean_score:.3f} ± {std_score:.3f}")
        evaluation[score_name] = mean_score
        evaluation_std[score_name] = std_score
    evaluations.append(evaluation)
    evaluations_std.append(evaluation_std)


# %%
# K-means clustering on text features
# ===================================
#
# Two feature extraction methods are used in this example:
#
# - :class:`~sklearn.feature_extraction.text.TfidfVectorizer` uses an in-memory
#   vocabulary (a Python dict) to map the most frequent words to features
#   indices and hence compute a word occurrence frequency (sparse) matrix. The
#   word frequencies are then reweighted using the Inverse Document Frequency
#   (IDF) vector collected feature-wise over the corpus.
#
# - :class:`~sklearn.feature_extraction.text.HashingVectorizer` hashes word
#   occurrences to a fixed dimensional space, possibly with collisions. The word
#   count vectors are then normalized to each have l2-norm equal to one
#   (projected to the euclidean unit-sphere) which seems to be important for
#   k-means to work in high dimensional space.
#
# Furthermore it is possible to post-process those extracted features using
# dimensionality reduction. We will explore the impact of those choices on the
# clustering quality in the following.
#
# Feature Extraction using TfidfVectorizer
# ----------------------------------------
#
# We first benchmark the estimators using a dictionary vectorizer along with an
# IDF normalization as provided by
# :class:`~sklearn.feature_extraction.text.TfidfVectorizer`.

from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer(
    max_df=0.5,
    min_df=5,
    stop_words="english",
)
t0 = time()
X_tfidf = vectorizer.fit_transform(dataset.data)

print(f"vectorization done in {time() - t0:.3f} s")
print(f"n_samples: {X_tfidf.shape[0]}, n_features: {X_tfidf.shape[1]}")

# %%
# After ignoring terms that appear in more than 50% of the documents (as set by
# `max_df=0.5`) and terms that are not present in at least 5 documents (set by
# `min_df=5`), the resulting number of unique terms `n_features` is around
# 8,000. We can additionally quantify the sparsity of the `X_tfidf` matrix as
# the fraction of non-zero entries devided by the total number of elements.

print(f"{X_tfidf.nnz / np.prod(X_tfidf.shape):.3f}")

# %%
# We find that around 0.7% of the entries of the `X_tfidf` matrix are non-zero.
#
# .. _kmeans_sparse_high_dim:
#
# Clustering sparse data with k-means
# -----------------------------------
#
# As both :class:`~sklearn.cluster.KMeans` and
# :class:`~sklearn.cluster.MiniBatchKMeans` optimize a non-convex objective
# function, their clustering is not guaranteed to be optimal for a given random
# init. Even further, on sparse high-dimensional data such as text vectorized
# using the Bag of Words approach, k-means can initialize centroids on extremely
# isolated data points. Those data points can stay their own centroids all
# along.
#
# The following code illustrates how the previous phenomenon can sometimes lead
# to highly imbalanced clusters, depending on the random initialization:

from sklearn.cluster import KMeans

for seed in range(5):
    kmeans = KMeans(
        n_clusters=true_k,
        max_iter=100,
        n_init=1,
        random_state=seed,
    ).fit(X_tfidf)
    cluster_ids, cluster_sizes = np.unique(kmeans.labels_, return_counts=True)
    print(f"Number of elements asigned to each cluster: {cluster_sizes}")
print()
print(
    "True number of documents in each category according to the class labels: "
    f"{category_sizes}"
)

# %%
# To avoid this problem, one possibility is to increase the number of runs with
# independent random initiations `n_init`. In such case the clustering with the
# best inertia (objective function of k-means) is chosen.

kmeans = KMeans(
    n_clusters=true_k,
    max_iter=100,
    n_init=5,
)

fit_and_evaluate(kmeans, X_tfidf, name="KMeans\non tf-idf vectors")

# %%
# All those clustering evaluation metrics have a maximum value of 1.0 (for a
# perfect clustering result). Higher values are better. Values of the Adjusted
# Rand-Index close to 0.0 correspond to a random labeling. Notice from the
# scores above that the cluster assignment is indeed well above chance level,
# but the overall quality can certainly improve.
#
# Keep in mind that the class labels may not reflect accurately the document
# topics and therefore metrics that use labels are not necessarily the best to
# evaluate the quality of our clustering pipeline.
#
# Performing dimensionality reduction using LSA
# ---------------------------------------------
#
# A `n_init=1` can still be used as long as the dimension of the vectorized
# space is reduced first to make k-means more stable. For such purpose we use
# :class:`~sklearn.decomposition.TruncatedSVD`, which works on term count/tf-idf
# matrices. Since SVD results are not normalized, we redo the normalization to
# improve the :class:`~sklearn.cluster.KMeans` result. Using SVD to reduce the
# dimensionality of TF-IDF document vectors is often known as `latent semantic
# analysis <https://en.wikipedia.org/wiki/Latent_semantic_analysis>`_ (LSA) in
# the information retrieval and text mining literature.

from sklearn.decomposition import TruncatedSVD
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import Normalizer


lsa = make_pipeline(TruncatedSVD(n_components=100), Normalizer(copy=False))
t0 = time()
X_lsa = lsa.fit_transform(X_tfidf)
explained_variance = lsa[0].explained_variance_ratio_.sum()

print(f"LSA done in {time() - t0:.3f} s")
print(f"Explained variance of the SVD step: {explained_variance * 100:.1f}%")

# %%
# Using a single initialization means the processing time will be reduced for
# both :class:`~sklearn.cluster.KMeans` and
# :class:`~sklearn.cluster.MiniBatchKMeans`.

kmeans = KMeans(
    n_clusters=true_k,
    max_iter=100,
    n_init=1,
)

fit_and_evaluate(kmeans, X_lsa, name="KMeans\nwith LSA on tf-idf vectors")

# %%
# We can observe that clustering on the LSA representation of the document is
# significantly faster (both because of `n_init=1` and because the
# dimensionality of the LSA feature space is much smaller). Furthermore, all the
# clustering evaluation metrics have improved. We repeat the experiment with
# :class:`~sklearn.cluster.MiniBatchKMeans`.

from sklearn.cluster import MiniBatchKMeans

minibatch_kmeans = MiniBatchKMeans(
    n_clusters=true_k,
    n_init=1,
    init_size=1000,
    batch_size=1000,
)

fit_and_evaluate(
    minibatch_kmeans,
    X_lsa,
    name="MiniBatchKMeans\nwith LSA on tf-idf vectors",
)

# %%
# Top terms per cluster
# ---------------------
#
# Since :class:`~sklearn.feature_extraction.text.TfidfVectorizer` can be
# inverted we can identify the cluster centers, which provide an intuition of
# the most influential words **for each cluster**. See the example script
# :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
# for a comparison with the most predictive words **for each target class**.

original_space_centroids = lsa[0].inverse_transform(kmeans.cluster_centers_)
order_centroids = original_space_centroids.argsort()[:, ::-1]
terms = vectorizer.get_feature_names_out()

for i in range(true_k):
    print(f"Cluster {i}: ", end="")
    for ind in order_centroids[i, :10]:
        print(f"{terms[ind]} ", end="")
    print()

# %%
# HashingVectorizer
# -----------------
# An alternative vectorization can be done using a
# :class:`~sklearn.feature_extraction.text.HashingVectorizer` instance, which
# does not provide IDF weighting as this is a stateless model (the fit method
# does nothing). When IDF weighting is needed it can be added by pipelining the
# :class:`~sklearn.feature_extraction.text.HashingVectorizer` output to a
# :class:`~sklearn.feature_extraction.text.TfidfTransformer` instance. In this
# case we also add LSA to the pipeline to reduce the dimension and sparcity of
# the hashed vector space.

from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

lsa_vectorizer = make_pipeline(
    HashingVectorizer(stop_words="english", n_features=50_000),
    TfidfTransformer(),
    TruncatedSVD(n_components=100, random_state=0),
    Normalizer(copy=False),
)

t0 = time()
X_hashed_lsa = lsa_vectorizer.fit_transform(dataset.data)
print(f"vectorization done in {time() - t0:.3f} s")

# %%
# One can observe that the LSA step takes a relatively long time to fit,
# especially with hashed vectors. The reason is that a hashed space is typically
# large (set to `n_features=50_000` in this example). One can try lowering the
# number of features at the expense of having a larger fraction of features with
# hash collisions as shown in the example notebook
# :ref:`sphx_glr_auto_examples_text_plot_hashing_vs_dict_vectorizer.py`.
#
# We now fit and evaluate the `kmeans` and `minibatch_kmeans` instances on this
# hashed-lsa-reduced data:

fit_and_evaluate(kmeans, X_hashed_lsa, name="KMeans\nwith LSA on hashed vectors")

# %%
fit_and_evaluate(
    minibatch_kmeans,
    X_hashed_lsa,
    name="MiniBatchKMeans\nwith LSA on hashed vectors",
)

# %%
# Both methods lead to good results that are similar to running the same models
# on the traditional LSA vectors (without hashing).
#
# Clustering evaluation summary
# ==============================

import pandas as pd
import matplotlib.pyplot as plt

fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(16, 6), sharey=True)

df = pd.DataFrame(evaluations[::-1]).set_index("estimator")
df_std = pd.DataFrame(evaluations_std[::-1]).set_index("estimator")

df.drop(
    ["train_time"],
    axis="columns",
).plot.barh(ax=ax0, xerr=df_std)
ax0.set_xlabel("Clustering scores")
ax0.set_ylabel("")

df["train_time"].plot.barh(ax=ax1, xerr=df_std["train_time"])
ax1.set_xlabel("Clustering time (s)")
plt.tight_layout()

# %%
# :class:`~sklearn.cluster.KMeans` and :class:`~sklearn.cluster.MiniBatchKMeans`
# suffer from the phenomenon called the `Curse of Dimensionality
# <https://en.wikipedia.org/wiki/Curse_of_dimensionality>`_ for high dimensional
# datasets such as text data. That is the reason why the overall scores improve
# when using LSA. Using LSA reduced data also improves the stability and
# requires lower clustering time, though keep in mind that the LSA step itself
# takes a long time, especially with hashed vectors.
#
# The Silhouette Coefficient is defined between 0 and 1. In all cases we obtain
# values close to 0 (even if they improve a bit after using LSA) because its
# definition requires measuring distances, in contrast with other evaluation
# metrics such as the V-measure and the Adjusted Rand Index which are only based
# on cluster assignments rather than distances. Notice that strictly speaking,
# one should not compare the Silhouette Coefficient between spaces of different
# dimension, due to the different notions of distance they imply.
#
# The homogeneity, completeness and hence v-measure metrics do not yield a
# baseline with regards to random labeling: this means that depending on the
# number of samples, clusters and ground truth classes, a completely random
# labeling will not always yield the same values. In particular random labeling
# won't yield zero scores, especially when the number of clusters is large. This
# problem can safely be ignored when the number of samples is more than a
# thousand and the number of clusters is less than 10, which is the case of the
# present example. For smaller sample sizes or larger number of clusters it is
# safer to use an adjusted index such as the Adjusted Rand Index (ARI). See the
# example
# :ref:`sphx_glr_auto_examples_cluster_plot_adjusted_for_chance_measures.py` for
# a demo on the effect of random labeling.
#
# The size of the error bars show that :class:`~sklearn.cluster.MiniBatchKMeans`
# is less stable than :class:`~sklearn.cluster.KMeans` for this relatively small
# dataset. It is more interesting to use when the number of samples is much
# bigger, but it can come at the expense of a small degradation in clustering
# quality compared to the traditional k-means algorithm.