File: _loss.pxd

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (81 lines) | stat: -rw-r--r-- 3,184 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# cython: language_level=3

cimport numpy as cnp

cnp.import_array()


# Fused types for y_true, y_pred, raw_prediction
ctypedef fused Y_DTYPE_C:
    cnp.npy_float64
    cnp.npy_float32


# Fused types for gradient and hessian
ctypedef fused G_DTYPE_C:
    cnp.npy_float64
    cnp.npy_float32


# Struct to return 2 doubles
ctypedef struct double_pair:
   double val1
   double val2


# C base class for loss functions
cdef class CyLossFunction:
    cdef double cy_loss(self, double y_true, double raw_prediction) nogil
    cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
    cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil


cdef class CyHalfSquaredError(CyLossFunction):
    cdef double cy_loss(self, double y_true, double raw_prediction) nogil
    cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
    cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil


cdef class CyAbsoluteError(CyLossFunction):
    cdef double cy_loss(self, double y_true, double raw_prediction) nogil
    cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
    cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil


cdef class CyPinballLoss(CyLossFunction):
    cdef readonly double quantile  # readonly makes it accessible from Python
    cdef double cy_loss(self, double y_true, double raw_prediction) nogil
    cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
    cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil


cdef class CyHalfPoissonLoss(CyLossFunction):
    cdef double cy_loss(self, double y_true, double raw_prediction) nogil
    cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
    cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil


cdef class CyHalfGammaLoss(CyLossFunction):
    cdef double cy_loss(self, double y_true, double raw_prediction) nogil
    cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
    cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil


cdef class CyHalfTweedieLoss(CyLossFunction):
    cdef readonly double power  # readonly makes it accessible from Python
    cdef double cy_loss(self, double y_true, double raw_prediction) nogil
    cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
    cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil


cdef class CyHalfTweedieLossIdentity(CyLossFunction):
    cdef readonly double power  # readonly makes it accessible from Python
    cdef double cy_loss(self, double y_true, double raw_prediction) nogil
    cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
    cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil


cdef class CyHalfBinomialLoss(CyLossFunction):
    cdef double cy_loss(self, double y_true, double raw_prediction) nogil
    cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
    cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil