1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
"""
Distribution functions used in GLM
"""
# Author: Christian Lorentzen <lorentzen.ch@googlemail.com>
# License: BSD 3 clause
#
# TODO(1.3): remove file
# This is only used for backward compatibility in _GeneralizedLinearRegressor
# for the deprecated family attribute.
from abc import ABCMeta, abstractmethod
from collections import namedtuple
import numbers
import numpy as np
from scipy.special import xlogy
DistributionBoundary = namedtuple("DistributionBoundary", ("value", "inclusive"))
class ExponentialDispersionModel(metaclass=ABCMeta):
r"""Base class for reproductive Exponential Dispersion Models (EDM).
The pdf of :math:`Y\sim \mathrm{EDM}(y_\textrm{pred}, \phi)` is given by
.. math:: p(y| \theta, \phi) = c(y, \phi)
\exp\left(\frac{\theta y-A(\theta)}{\phi}\right)
= \tilde{c}(y, \phi)
\exp\left(-\frac{d(y, y_\textrm{pred})}{2\phi}\right)
with mean :math:`\mathrm{E}[Y] = A'(\theta) = y_\textrm{pred}`,
variance :math:`\mathrm{Var}[Y] = \phi \cdot v(y_\textrm{pred})`,
unit variance :math:`v(y_\textrm{pred})` and
unit deviance :math:`d(y,y_\textrm{pred})`.
Methods
-------
deviance
deviance_derivative
in_y_range
unit_deviance
unit_deviance_derivative
unit_variance
References
----------
https://en.wikipedia.org/wiki/Exponential_dispersion_model.
"""
def in_y_range(self, y):
"""Returns ``True`` if y is in the valid range of Y~EDM.
Parameters
----------
y : array of shape (n_samples,)
Target values.
"""
# Note that currently supported distributions have +inf upper bound
if not isinstance(self._lower_bound, DistributionBoundary):
raise TypeError(
"_lower_bound attribute must be of type DistributionBoundary"
)
if self._lower_bound.inclusive:
return np.greater_equal(y, self._lower_bound.value)
else:
return np.greater(y, self._lower_bound.value)
@abstractmethod
def unit_variance(self, y_pred):
r"""Compute the unit variance function.
The unit variance :math:`v(y_\textrm{pred})` determines the variance as
a function of the mean :math:`y_\textrm{pred}` by
:math:`\mathrm{Var}[Y_i] = \phi/s_i*v(y_\textrm{pred}_i)`.
It can also be derived from the unit deviance
:math:`d(y,y_\textrm{pred})` as
.. math:: v(y_\textrm{pred}) = \frac{2}{
\frac{\partial^2 d(y,y_\textrm{pred})}{
\partialy_\textrm{pred}^2}}\big|_{y=y_\textrm{pred}}
See also :func:`variance`.
Parameters
----------
y_pred : array of shape (n_samples,)
Predicted mean.
"""
@abstractmethod
def unit_deviance(self, y, y_pred, check_input=False):
r"""Compute the unit deviance.
The unit_deviance :math:`d(y,y_\textrm{pred})` can be defined by the
log-likelihood as
:math:`d(y,y_\textrm{pred}) = -2\phi\cdot
\left(loglike(y,y_\textrm{pred},\phi) - loglike(y,y,\phi)\right).`
Parameters
----------
y : array of shape (n_samples,)
Target values.
y_pred : array of shape (n_samples,)
Predicted mean.
check_input : bool, default=False
If True raise an exception on invalid y or y_pred values, otherwise
they will be propagated as NaN.
Returns
-------
deviance: array of shape (n_samples,)
Computed deviance
"""
def unit_deviance_derivative(self, y, y_pred):
r"""Compute the derivative of the unit deviance w.r.t. y_pred.
The derivative of the unit deviance is given by
:math:`\frac{\partial}{\partialy_\textrm{pred}}d(y,y_\textrm{pred})
= -2\frac{y-y_\textrm{pred}}{v(y_\textrm{pred})}`
with unit variance :math:`v(y_\textrm{pred})`.
Parameters
----------
y : array of shape (n_samples,)
Target values.
y_pred : array of shape (n_samples,)
Predicted mean.
"""
return -2 * (y - y_pred) / self.unit_variance(y_pred)
def deviance(self, y, y_pred, weights=1):
r"""Compute the deviance.
The deviance is a weighted sum of the per sample unit deviances,
:math:`D = \sum_i s_i \cdot d(y_i, y_\textrm{pred}_i)`
with weights :math:`s_i` and unit deviance
:math:`d(y,y_\textrm{pred})`.
In terms of the log-likelihood it is :math:`D = -2\phi\cdot
\left(loglike(y,y_\textrm{pred},\frac{phi}{s})
- loglike(y,y,\frac{phi}{s})\right)`.
Parameters
----------
y : array of shape (n_samples,)
Target values.
y_pred : array of shape (n_samples,)
Predicted mean.
weights : {int, array of shape (n_samples,)}, default=1
Weights or exposure to which variance is inverse proportional.
"""
return np.sum(weights * self.unit_deviance(y, y_pred))
def deviance_derivative(self, y, y_pred, weights=1):
r"""Compute the derivative of the deviance w.r.t. y_pred.
It gives :math:`\frac{\partial}{\partial y_\textrm{pred}}
D(y, \y_\textrm{pred}; weights)`.
Parameters
----------
y : array, shape (n_samples,)
Target values.
y_pred : array, shape (n_samples,)
Predicted mean.
weights : {int, array of shape (n_samples,)}, default=1
Weights or exposure to which variance is inverse proportional.
"""
return weights * self.unit_deviance_derivative(y, y_pred)
class TweedieDistribution(ExponentialDispersionModel):
r"""A class for the Tweedie distribution.
A Tweedie distribution with mean :math:`y_\textrm{pred}=\mathrm{E}[Y]`
is uniquely defined by it's mean-variance relationship
:math:`\mathrm{Var}[Y] \propto y_\textrm{pred}^power`.
Special cases are:
===== ================
Power Distribution
===== ================
0 Normal
1 Poisson
(1,2) Compound Poisson
2 Gamma
3 Inverse Gaussian
Parameters
----------
power : float, default=0
The variance power of the `unit_variance`
:math:`v(y_\textrm{pred}) = y_\textrm{pred}^{power}`.
For ``0<power<1``, no distribution exists.
"""
def __init__(self, power=0):
self.power = power
@property
def power(self):
return self._power
@power.setter
def power(self, power):
# We use a property with a setter, to update lower and
# upper bound when the power parameter is updated e.g. in grid
# search.
if not isinstance(power, numbers.Real):
raise TypeError("power must be a real number, input was {0}".format(power))
if power <= 0:
# Extreme Stable or Normal distribution
self._lower_bound = DistributionBoundary(-np.Inf, inclusive=False)
elif 0 < power < 1:
raise ValueError(
"Tweedie distribution is only defined for power<=0 and power>=1."
)
elif 1 <= power < 2:
# Poisson or Compound Poisson distribution
self._lower_bound = DistributionBoundary(0, inclusive=True)
elif power >= 2:
# Gamma, Positive Stable, Inverse Gaussian distributions
self._lower_bound = DistributionBoundary(0, inclusive=False)
else: # pragma: no cover
# this branch should be unreachable.
raise ValueError
self._power = power
def unit_variance(self, y_pred):
"""Compute the unit variance of a Tweedie distribution
v(y_\textrm{pred})=y_\textrm{pred}**power.
Parameters
----------
y_pred : array of shape (n_samples,)
Predicted mean.
"""
return np.power(y_pred, self.power)
def unit_deviance(self, y, y_pred, check_input=False):
r"""Compute the unit deviance.
The unit_deviance :math:`d(y,y_\textrm{pred})` can be defined by the
log-likelihood as
:math:`d(y,y_\textrm{pred}) = -2\phi\cdot
\left(loglike(y,y_\textrm{pred},\phi) - loglike(y,y,\phi)\right).`
Parameters
----------
y : array of shape (n_samples,)
Target values.
y_pred : array of shape (n_samples,)
Predicted mean.
check_input : bool, default=False
If True raise an exception on invalid y or y_pred values, otherwise
they will be propagated as NaN.
Returns
-------
deviance: array of shape (n_samples,)
Computed deviance
"""
p = self.power
if check_input:
message = (
"Mean Tweedie deviance error with power={} can only be used on ".format(
p
)
)
if p < 0:
# 'Extreme stable', y any real number, y_pred > 0
if (y_pred <= 0).any():
raise ValueError(message + "strictly positive y_pred.")
elif p == 0:
# Normal, y and y_pred can be any real number
pass
elif 0 < p < 1:
raise ValueError(
"Tweedie deviance is only defined for power<=0 and power>=1."
)
elif 1 <= p < 2:
# Poisson and compound Poisson distribution, y >= 0, y_pred > 0
if (y < 0).any() or (y_pred <= 0).any():
raise ValueError(
message + "non-negative y and strictly positive y_pred."
)
elif p >= 2:
# Gamma and Extreme stable distribution, y and y_pred > 0
if (y <= 0).any() or (y_pred <= 0).any():
raise ValueError(message + "strictly positive y and y_pred.")
else: # pragma: nocover
# Unreachable statement
raise ValueError
if p < 0:
# 'Extreme stable', y any real number, y_pred > 0
dev = 2 * (
np.power(np.maximum(y, 0), 2 - p) / ((1 - p) * (2 - p))
- y * np.power(y_pred, 1 - p) / (1 - p)
+ np.power(y_pred, 2 - p) / (2 - p)
)
elif p == 0:
# Normal distribution, y and y_pred any real number
dev = (y - y_pred) ** 2
elif p < 1:
raise ValueError(
"Tweedie deviance is only defined for power<=0 and power>=1."
)
elif p == 1:
# Poisson distribution
dev = 2 * (xlogy(y, y / y_pred) - y + y_pred)
elif p == 2:
# Gamma distribution
dev = 2 * (np.log(y_pred / y) + y / y_pred - 1)
else:
dev = 2 * (
np.power(y, 2 - p) / ((1 - p) * (2 - p))
- y * np.power(y_pred, 1 - p) / (1 - p)
+ np.power(y_pred, 2 - p) / (2 - p)
)
return dev
class NormalDistribution(TweedieDistribution):
"""Class for the Normal (aka Gaussian) distribution."""
def __init__(self):
super().__init__(power=0)
class PoissonDistribution(TweedieDistribution):
"""Class for the scaled Poisson distribution."""
def __init__(self):
super().__init__(power=1)
class GammaDistribution(TweedieDistribution):
"""Class for the Gamma distribution."""
def __init__(self):
super().__init__(power=2)
class InverseGaussianDistribution(TweedieDistribution):
"""Class for the scaled InverseGaussianDistribution distribution."""
def __init__(self):
super().__init__(power=3)
EDM_DISTRIBUTIONS = {
"normal": NormalDistribution,
"poisson": PoissonDistribution,
"gamma": GammaDistribution,
"inverse-gaussian": InverseGaussianDistribution,
}
|