1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
"""Bisecting K-means clustering."""
# Author: Michal Krawczyk <mkrwczyk.1@gmail.com>
import warnings
import numpy as np
import scipy.sparse as sp
from ._kmeans import _BaseKMeans
from ._kmeans import _kmeans_single_elkan
from ._kmeans import _kmeans_single_lloyd
from ._kmeans import _labels_inertia_threadpool_limit
from ._k_means_common import _inertia_dense
from ._k_means_common import _inertia_sparse
from ..utils.extmath import row_norms
from ..utils._openmp_helpers import _openmp_effective_n_threads
from ..utils.validation import check_is_fitted
from ..utils.validation import _check_sample_weight
from ..utils.validation import check_random_state
from ..utils._param_validation import StrOptions
class _BisectingTree:
"""Tree structure representing the hierarchical clusters of BisectingKMeans."""
def __init__(self, center, indices, score):
"""Create a new cluster node in the tree.
The node holds the center of this cluster and the indices of the data points
that belong to it.
"""
self.center = center
self.indices = indices
self.score = score
self.left = None
self.right = None
def split(self, labels, centers, scores):
"""Split the cluster node into two subclusters."""
self.left = _BisectingTree(
indices=self.indices[labels == 0], center=centers[0], score=scores[0]
)
self.right = _BisectingTree(
indices=self.indices[labels == 1], center=centers[1], score=scores[1]
)
# reset the indices attribute to save memory
self.indices = None
def get_cluster_to_bisect(self):
"""Return the cluster node to bisect next.
It's based on the score of the cluster, which can be either the number of
data points assigned to that cluster or the inertia of that cluster
(see `bisecting_strategy` for details).
"""
max_score = None
for cluster_leaf in self.iter_leaves():
if max_score is None or cluster_leaf.score > max_score:
max_score = cluster_leaf.score
best_cluster_leaf = cluster_leaf
return best_cluster_leaf
def iter_leaves(self):
"""Iterate over all the cluster leaves in the tree."""
if self.left is None:
yield self
else:
yield from self.left.iter_leaves()
yield from self.right.iter_leaves()
class BisectingKMeans(_BaseKMeans):
"""Bisecting K-Means clustering.
Read more in the :ref:`User Guide <bisect_k_means>`.
.. versionadded:: 1.1
Parameters
----------
n_clusters : int, default=8
The number of clusters to form as well as the number of
centroids to generate.
init : {'k-means++', 'random'} or callable, default='random'
Method for initialization:
'k-means++' : selects initial cluster centers for k-mean
clustering in a smart way to speed up convergence. See section
Notes in k_init for more details.
'random': choose `n_clusters` observations (rows) at random from data
for the initial centroids.
If a callable is passed, it should take arguments X, n_clusters and a
random state and return an initialization.
n_init : int, default=1
Number of time the inner k-means algorithm will be run with different
centroid seeds in each bisection.
That will result producing for each bisection best output of n_init
consecutive runs in terms of inertia.
random_state : int, RandomState instance or None, default=None
Determines random number generation for centroid initialization
in inner K-Means. Use an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
max_iter : int, default=300
Maximum number of iterations of the inner k-means algorithm at each
bisection.
verbose : int, default=0
Verbosity mode.
tol : float, default=1e-4
Relative tolerance with regards to Frobenius norm of the difference
in the cluster centers of two consecutive iterations to declare
convergence. Used in inner k-means algorithm at each bisection to pick
best possible clusters.
copy_x : bool, default=True
When pre-computing distances it is more numerically accurate to center
the data first. If copy_x is True (default), then the original data is
not modified. If False, the original data is modified, and put back
before the function returns, but small numerical differences may be
introduced by subtracting and then adding the data mean. Note that if
the original data is not C-contiguous, a copy will be made even if
copy_x is False. If the original data is sparse, but not in CSR format,
a copy will be made even if copy_x is False.
algorithm : {"lloyd", "elkan"}, default="lloyd"
Inner K-means algorithm used in bisection.
The classical EM-style algorithm is `"lloyd"`.
The `"elkan"` variation can be more efficient on some datasets with
well-defined clusters, by using the triangle inequality. However it's
more memory intensive due to the allocation of an extra array of shape
`(n_samples, n_clusters)`.
bisecting_strategy : {"biggest_inertia", "largest_cluster"},\
default="biggest_inertia"
Defines how bisection should be performed:
- "biggest_inertia" means that BisectingKMeans will always check
all calculated cluster for cluster with biggest SSE
(Sum of squared errors) and bisect it. This approach concentrates on
precision, but may be costly in terms of execution time (especially for
larger amount of data points).
- "largest_cluster" - BisectingKMeans will always split cluster with
largest amount of points assigned to it from all clusters
previously calculated. That should work faster than picking by SSE
('biggest_inertia') and may produce similar results in most cases.
Attributes
----------
cluster_centers_ : ndarray of shape (n_clusters, n_features)
Coordinates of cluster centers. If the algorithm stops before fully
converging (see ``tol`` and ``max_iter``), these will not be
consistent with ``labels_``.
labels_ : ndarray of shape (n_samples,)
Labels of each point.
inertia_ : float
Sum of squared distances of samples to their closest cluster center,
weighted by the sample weights if provided.
n_features_in_ : int
Number of features seen during :term:`fit`.
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
See Also
--------
KMeans : Original implementation of K-Means algorithm.
Notes
-----
It might be inefficient when n_cluster is less than 3, due to unnecessary
calculations for that case.
Examples
--------
>>> from sklearn.cluster import BisectingKMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [10, 2], [10, 4], [10, 0],
... [10, 6], [10, 8], [10, 10]])
>>> bisect_means = BisectingKMeans(n_clusters=3, random_state=0).fit(X)
>>> bisect_means.labels_
array([2, 2, 2, 0, 0, 0, 1, 1, 1], dtype=int32)
>>> bisect_means.predict([[0, 0], [12, 3]])
array([2, 0], dtype=int32)
>>> bisect_means.cluster_centers_
array([[10., 2.],
[10., 8.],
[ 1., 2.]])
"""
_parameter_constraints: dict = {
**_BaseKMeans._parameter_constraints,
"init": [StrOptions({"k-means++", "random"}), callable],
"copy_x": ["boolean"],
"algorithm": [StrOptions({"lloyd", "elkan"})],
"bisecting_strategy": [StrOptions({"biggest_inertia", "largest_cluster"})],
}
def __init__(
self,
n_clusters=8,
*,
init="random",
n_init=1,
random_state=None,
max_iter=300,
verbose=0,
tol=1e-4,
copy_x=True,
algorithm="lloyd",
bisecting_strategy="biggest_inertia",
):
super().__init__(
n_clusters=n_clusters,
init=init,
max_iter=max_iter,
verbose=verbose,
random_state=random_state,
tol=tol,
n_init=n_init,
)
self.copy_x = copy_x
self.algorithm = algorithm
self.bisecting_strategy = bisecting_strategy
def _warn_mkl_vcomp(self, n_active_threads):
"""Warn when vcomp and mkl are both present"""
warnings.warn(
"BisectingKMeans is known to have a memory leak on Windows "
"with MKL, when there are less chunks than available "
"threads. You can avoid it by setting the environment"
f" variable OMP_NUM_THREADS={n_active_threads}."
)
def _inertia_per_cluster(self, X, centers, labels, sample_weight):
"""Calculate the sum of squared errors (inertia) per cluster.
Parameters
----------
X : {ndarray, csr_matrix} of shape (n_samples, n_features)
The input samples.
centers : ndarray of shape (n_clusters, n_features)
The cluster centers.
labels : ndarray of shape (n_samples,)
Index of the cluster each sample belongs to.
sample_weight : ndarray of shape (n_samples,)
The weights for each observation in X.
Returns
-------
inertia_per_cluster : ndarray of shape (n_clusters,)
Sum of squared errors (inertia) for each cluster.
"""
_inertia = _inertia_sparse if sp.issparse(X) else _inertia_dense
inertia_per_cluster = np.empty(centers.shape[1])
for label in range(centers.shape[0]):
inertia_per_cluster[label] = _inertia(
X, sample_weight, centers, labels, self._n_threads, single_label=label
)
return inertia_per_cluster
def _bisect(self, X, x_squared_norms, sample_weight, cluster_to_bisect):
"""Split a cluster into 2 subsclusters.
Parameters
----------
X : {ndarray, csr_matrix} of shape (n_samples, n_features)
Training instances to cluster.
x_squared_norms : ndarray of shape (n_samples,)
Squared euclidean norm of each data point.
sample_weight : ndarray of shape (n_samples,)
The weights for each observation in X.
cluster_to_bisect : _BisectingTree node object
The cluster node to split.
"""
X = X[cluster_to_bisect.indices]
x_squared_norms = x_squared_norms[cluster_to_bisect.indices]
sample_weight = sample_weight[cluster_to_bisect.indices]
best_inertia = None
# Split samples in X into 2 clusters.
# Repeating `n_init` times to obtain best clusters
for _ in range(self.n_init):
centers_init = self._init_centroids(
X, x_squared_norms, self.init, self._random_state, n_centroids=2
)
labels, inertia, centers, _ = self._kmeans_single(
X,
sample_weight,
centers_init,
max_iter=self.max_iter,
verbose=self.verbose,
tol=self.tol,
n_threads=self._n_threads,
)
# allow small tolerance on the inertia to accommodate for
# non-deterministic rounding errors due to parallel computation
if best_inertia is None or inertia < best_inertia * (1 - 1e-6):
best_labels = labels
best_centers = centers
best_inertia = inertia
if self.verbose:
print(f"New centroids from bisection: {best_centers}")
if self.bisecting_strategy == "biggest_inertia":
scores = self._inertia_per_cluster(
X, best_centers, best_labels, sample_weight
)
else: # bisecting_strategy == "largest_cluster"
scores = np.bincount(best_labels)
cluster_to_bisect.split(best_labels, best_centers, scores)
def fit(self, X, y=None, sample_weight=None):
"""Compute bisecting k-means clustering.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training instances to cluster.
.. note:: The data will be converted to C ordering,
which will cause a memory copy
if the given data is not C-contiguous.
y : Ignored
Not used, present here for API consistency by convention.
sample_weight : array-like of shape (n_samples,), default=None
The weights for each observation in X. If None, all observations
are assigned equal weight.
Returns
-------
self
Fitted estimator.
"""
self._validate_params()
X = self._validate_data(
X,
accept_sparse="csr",
dtype=[np.float64, np.float32],
order="C",
copy=self.copy_x,
accept_large_sparse=False,
)
self._check_params_vs_input(X)
self._random_state = check_random_state(self.random_state)
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
self._n_threads = _openmp_effective_n_threads()
if self.algorithm == "lloyd" or self.n_clusters == 1:
self._kmeans_single = _kmeans_single_lloyd
self._check_mkl_vcomp(X, X.shape[0])
else:
self._kmeans_single = _kmeans_single_elkan
# Subtract of mean of X for more accurate distance computations
if not sp.issparse(X):
self._X_mean = X.mean(axis=0)
X -= self._X_mean
# Initialize the hierarchical clusters tree
self._bisecting_tree = _BisectingTree(
indices=np.arange(X.shape[0]),
center=X.mean(axis=0),
score=0,
)
x_squared_norms = row_norms(X, squared=True)
for _ in range(self.n_clusters - 1):
# Chose cluster to bisect
cluster_to_bisect = self._bisecting_tree.get_cluster_to_bisect()
# Split this cluster into 2 subclusters
self._bisect(X, x_squared_norms, sample_weight, cluster_to_bisect)
# Aggregate final labels and centers from the bisecting tree
self.labels_ = np.full(X.shape[0], -1, dtype=np.int32)
self.cluster_centers_ = np.empty((self.n_clusters, X.shape[1]), dtype=X.dtype)
for i, cluster_node in enumerate(self._bisecting_tree.iter_leaves()):
self.labels_[cluster_node.indices] = i
self.cluster_centers_[i] = cluster_node.center
cluster_node.label = i # label final clusters for future prediction
cluster_node.indices = None # release memory
# Restore original data
if not sp.issparse(X):
X += self._X_mean
self.cluster_centers_ += self._X_mean
_inertia = _inertia_sparse if sp.issparse(X) else _inertia_dense
self.inertia_ = _inertia(
X, sample_weight, self.cluster_centers_, self.labels_, self._n_threads
)
self._n_features_out = self.cluster_centers_.shape[0]
return self
def predict(self, X):
"""Predict which cluster each sample in X belongs to.
Prediction is made by going down the hierarchical tree
in searching of closest leaf cluster.
In the vector quantization literature, `cluster_centers_` is called
the code book and each value returned by `predict` is the index of
the closest code in the code book.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
New data to predict.
Returns
-------
labels : ndarray of shape (n_samples,)
Index of the cluster each sample belongs to.
"""
check_is_fitted(self)
X = self._check_test_data(X)
x_squared_norms = row_norms(X, squared=True)
# sample weights are unused but necessary in cython helpers
sample_weight = np.ones_like(x_squared_norms)
labels = self._predict_recursive(X, sample_weight, self._bisecting_tree)
return labels
def _predict_recursive(self, X, sample_weight, cluster_node):
"""Predict recursively by going down the hierarchical tree.
Parameters
----------
X : {ndarray, csr_matrix} of shape (n_samples, n_features)
The data points, currently assigned to `cluster_node`, to predict between
the subclusters of this node.
sample_weight : ndarray of shape (n_samples,)
The weights for each observation in X.
cluster_node : _BisectingTree node object
The cluster node of the hierarchical tree.
Returns
-------
labels : ndarray of shape (n_samples,)
Index of the cluster each sample belongs to.
"""
if cluster_node.left is None:
# This cluster has no subcluster. Labels are just the label of the cluster.
return np.full(X.shape[0], cluster_node.label, dtype=np.int32)
# Determine if data points belong to the left or right subcluster
centers = np.vstack((cluster_node.left.center, cluster_node.right.center))
if hasattr(self, "_X_mean"):
centers += self._X_mean
cluster_labels = _labels_inertia_threadpool_limit(
X,
sample_weight,
centers,
self._n_threads,
return_inertia=False,
)
mask = cluster_labels == 0
# Compute the labels for each subset of the data points.
labels = np.full(X.shape[0], -1, dtype=np.int32)
labels[mask] = self._predict_recursive(
X[mask], sample_weight[mask], cluster_node.left
)
labels[~mask] = self._predict_recursive(
X[~mask], sample_weight[~mask], cluster_node.right
)
return labels
def _more_tags(self):
return {"preserves_dtype": [np.float64, np.float32]}
|