File: test_bisect_k_means.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (135 lines) | stat: -rw-r--r-- 4,137 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import pytest
import scipy.sparse as sp

from sklearn.utils._testing import assert_array_equal, assert_allclose
from sklearn.cluster import BisectingKMeans


@pytest.mark.parametrize("bisecting_strategy", ["biggest_inertia", "largest_cluster"])
def test_three_clusters(bisecting_strategy):
    """Tries to perform bisect k-means for three clusters to check
    if splitting data is performed correctly.
    """

    # X = np.array([[1, 2], [1, 4], [1, 0],
    #               [10, 2], [10, 4], [10, 0],
    #               [10, 6], [10, 8], [10, 10]])

    # X[0][1] swapped with X[1][1] intentionally for checking labeling
    X = np.array(
        [[1, 2], [10, 4], [1, 0], [10, 2], [1, 4], [10, 0], [10, 6], [10, 8], [10, 10]]
    )
    bisect_means = BisectingKMeans(
        n_clusters=3, random_state=0, bisecting_strategy=bisecting_strategy
    )
    bisect_means.fit(X)

    expected_centers = [[10, 2], [10, 8], [1, 2]]
    expected_predict = [2, 0]
    expected_labels = [2, 0, 2, 0, 2, 0, 1, 1, 1]

    assert_allclose(expected_centers, bisect_means.cluster_centers_)
    assert_array_equal(expected_predict, bisect_means.predict([[0, 0], [12, 3]]))
    assert_array_equal(expected_labels, bisect_means.labels_)


def test_sparse():
    """Test Bisecting K-Means with sparse data.

    Checks if labels and centers are the same between dense and sparse.
    """

    rng = np.random.RandomState(0)

    X = rng.rand(20, 2)
    X[X < 0.8] = 0
    X_csr = sp.csr_matrix(X)

    bisect_means = BisectingKMeans(n_clusters=3, random_state=0)

    bisect_means.fit(X_csr)
    sparse_centers = bisect_means.cluster_centers_

    bisect_means.fit(X)
    normal_centers = bisect_means.cluster_centers_

    # Check if results is the same for dense and sparse data
    assert_allclose(normal_centers, sparse_centers, atol=1e-8)


@pytest.mark.parametrize("n_clusters", [4, 5])
def test_n_clusters(n_clusters):
    """Test if resulting labels are in range [0, n_clusters - 1]."""

    rng = np.random.RandomState(0)
    X = rng.rand(10, 2)

    bisect_means = BisectingKMeans(n_clusters=n_clusters, random_state=0)
    bisect_means.fit(X)

    assert_array_equal(np.unique(bisect_means.labels_), np.arange(n_clusters))


def test_one_cluster():
    """Test single cluster."""

    X = np.array([[1, 2], [10, 2], [10, 8]])

    bisect_means = BisectingKMeans(n_clusters=1, random_state=0).fit(X)

    # All labels from fit or predict should be equal 0
    assert all(bisect_means.labels_ == 0)
    assert all(bisect_means.predict(X) == 0)

    assert_allclose(bisect_means.cluster_centers_, X.mean(axis=0).reshape(1, -1))


@pytest.mark.parametrize("is_sparse", [True, False])
def test_fit_predict(is_sparse):
    """Check if labels from fit(X) method are same as from fit(X).predict(X)."""
    rng = np.random.RandomState(0)

    X = rng.rand(10, 2)

    if is_sparse:
        X[X < 0.8] = 0
        X = sp.csr_matrix(X)

    bisect_means = BisectingKMeans(n_clusters=3, random_state=0)
    bisect_means.fit(X)

    assert_array_equal(bisect_means.labels_, bisect_means.predict(X))


@pytest.mark.parametrize("is_sparse", [True, False])
def test_dtype_preserved(is_sparse, global_dtype):
    """Check that centers dtype is the same as input data dtype."""
    rng = np.random.RandomState(0)
    X = rng.rand(10, 2).astype(global_dtype, copy=False)

    if is_sparse:
        X[X < 0.8] = 0
        X = sp.csr_matrix(X)

    km = BisectingKMeans(n_clusters=3, random_state=0)
    km.fit(X)

    assert km.cluster_centers_.dtype == global_dtype


@pytest.mark.parametrize("is_sparse", [True, False])
def test_float32_float64_equivalence(is_sparse):
    """Check that the results are the same between float32 and float64."""
    rng = np.random.RandomState(0)
    X = rng.rand(10, 2)

    if is_sparse:
        X[X < 0.8] = 0
        X = sp.csr_matrix(X)

    km64 = BisectingKMeans(n_clusters=3, random_state=0).fit(X)
    km32 = BisectingKMeans(n_clusters=3, random_state=0).fit(X.astype(np.float32))

    assert_allclose(km32.cluster_centers_, km64.cluster_centers_)
    assert_array_equal(km32.labels_, km64.labels_)