File: test_graphical_lasso.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (242 lines) | stat: -rw-r--r-- 8,658 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
""" Test the graphical_lasso module.
"""
import sys
import pytest

import numpy as np
from scipy import linalg

from numpy.testing import assert_allclose
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_less
from sklearn.utils._testing import _convert_container

from sklearn.covariance import (
    graphical_lasso,
    GraphicalLasso,
    GraphicalLassoCV,
    empirical_covariance,
)
from sklearn.datasets import make_sparse_spd_matrix
from io import StringIO
from sklearn.utils import check_random_state
from sklearn import datasets


def test_graphical_lasso(random_state=0):
    # Sample data from a sparse multivariate normal
    dim = 20
    n_samples = 100
    random_state = check_random_state(random_state)
    prec = make_sparse_spd_matrix(dim, alpha=0.95, random_state=random_state)
    cov = linalg.inv(prec)
    X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples)
    emp_cov = empirical_covariance(X)

    for alpha in (0.0, 0.1, 0.25):
        covs = dict()
        icovs = dict()
        for method in ("cd", "lars"):
            cov_, icov_, costs = graphical_lasso(
                emp_cov, return_costs=True, alpha=alpha, mode=method
            )
            covs[method] = cov_
            icovs[method] = icov_
            costs, dual_gap = np.array(costs).T
            # Check that the costs always decrease (doesn't hold if alpha == 0)
            if not alpha == 0:
                assert_array_less(np.diff(costs), 0)
        # Check that the 2 approaches give similar results
        assert_array_almost_equal(covs["cd"], covs["lars"], decimal=4)
        assert_array_almost_equal(icovs["cd"], icovs["lars"], decimal=4)

    # Smoke test the estimator
    model = GraphicalLasso(alpha=0.25).fit(X)
    model.score(X)
    assert_array_almost_equal(model.covariance_, covs["cd"], decimal=4)
    assert_array_almost_equal(model.covariance_, covs["lars"], decimal=4)

    # For a centered matrix, assume_centered could be chosen True or False
    # Check that this returns indeed the same result for centered data
    Z = X - X.mean(0)
    precs = list()
    for assume_centered in (False, True):
        prec_ = GraphicalLasso(assume_centered=assume_centered).fit(Z).precision_
        precs.append(prec_)
    assert_array_almost_equal(precs[0], precs[1])


def test_graphical_lasso_iris():
    # Hard-coded solution from R glasso package for alpha=1.0
    # (need to set penalize.diagonal to FALSE)
    cov_R = np.array(
        [
            [0.68112222, 0.0000000, 0.265820, 0.02464314],
            [0.00000000, 0.1887129, 0.000000, 0.00000000],
            [0.26582000, 0.0000000, 3.095503, 0.28697200],
            [0.02464314, 0.0000000, 0.286972, 0.57713289],
        ]
    )
    icov_R = np.array(
        [
            [1.5190747, 0.000000, -0.1304475, 0.0000000],
            [0.0000000, 5.299055, 0.0000000, 0.0000000],
            [-0.1304475, 0.000000, 0.3498624, -0.1683946],
            [0.0000000, 0.000000, -0.1683946, 1.8164353],
        ]
    )
    X = datasets.load_iris().data
    emp_cov = empirical_covariance(X)
    for method in ("cd", "lars"):
        cov, icov = graphical_lasso(emp_cov, alpha=1.0, return_costs=False, mode=method)
        assert_array_almost_equal(cov, cov_R)
        assert_array_almost_equal(icov, icov_R)


def test_graph_lasso_2D():
    # Hard-coded solution from Python skggm package
    # obtained by calling `quic(emp_cov, lam=.1, tol=1e-8)`
    cov_skggm = np.array([[3.09550269, 1.186972], [1.186972, 0.57713289]])

    icov_skggm = np.array([[1.52836773, -3.14334831], [-3.14334831, 8.19753385]])
    X = datasets.load_iris().data[:, 2:]
    emp_cov = empirical_covariance(X)
    for method in ("cd", "lars"):
        cov, icov = graphical_lasso(emp_cov, alpha=0.1, return_costs=False, mode=method)
        assert_array_almost_equal(cov, cov_skggm)
        assert_array_almost_equal(icov, icov_skggm)


def test_graphical_lasso_iris_singular():
    # Small subset of rows to test the rank-deficient case
    # Need to choose samples such that none of the variances are zero
    indices = np.arange(10, 13)

    # Hard-coded solution from R glasso package for alpha=0.01
    cov_R = np.array(
        [
            [0.08, 0.056666662595, 0.00229729713223, 0.00153153142149],
            [0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222],
            [0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009],
            [0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222],
        ]
    )
    icov_R = np.array(
        [
            [24.42244057, -16.831679593, 0.0, 0.0],
            [-16.83168201, 24.351841681, -6.206896552, -12.5],
            [0.0, -6.206896171, 153.103448276, 0.0],
            [0.0, -12.499999143, 0.0, 462.5],
        ]
    )
    X = datasets.load_iris().data[indices, :]
    emp_cov = empirical_covariance(X)
    for method in ("cd", "lars"):
        cov, icov = graphical_lasso(
            emp_cov, alpha=0.01, return_costs=False, mode=method
        )
        assert_array_almost_equal(cov, cov_R, decimal=5)
        assert_array_almost_equal(icov, icov_R, decimal=5)


def test_graphical_lasso_cv(random_state=1):
    # Sample data from a sparse multivariate normal
    dim = 5
    n_samples = 6
    random_state = check_random_state(random_state)
    prec = make_sparse_spd_matrix(dim, alpha=0.96, random_state=random_state)
    cov = linalg.inv(prec)
    X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples)
    # Capture stdout, to smoke test the verbose mode
    orig_stdout = sys.stdout
    try:
        sys.stdout = StringIO()
        # We need verbose very high so that Parallel prints on stdout
        GraphicalLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X)
    finally:
        sys.stdout = orig_stdout


@pytest.mark.parametrize("alphas_container_type", ["list", "tuple", "array"])
def test_graphical_lasso_cv_alphas_iterable(alphas_container_type):
    """Check that we can pass an array-like to `alphas`.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/22489
    """
    true_cov = np.array(
        [
            [0.8, 0.0, 0.2, 0.0],
            [0.0, 0.4, 0.0, 0.0],
            [0.2, 0.0, 0.3, 0.1],
            [0.0, 0.0, 0.1, 0.7],
        ]
    )
    rng = np.random.RandomState(0)
    X = rng.multivariate_normal(mean=[0, 0, 0, 0], cov=true_cov, size=200)
    alphas = _convert_container([0.02, 0.03], alphas_container_type)
    GraphicalLassoCV(alphas=alphas, tol=1e-1, n_jobs=1).fit(X)


@pytest.mark.parametrize(
    "alphas,err_type,err_msg",
    [
        ([-0.02, 0.03], ValueError, "must be > 0"),
        ([0, 0.03], ValueError, "must be > 0"),
        (["not_number", 0.03], TypeError, "must be an instance of float"),
    ],
)
def test_graphical_lasso_cv_alphas_invalid_array(alphas, err_type, err_msg):
    """Check that if an array-like containing a value
    outside of (0, inf] is passed to `alphas`, a ValueError is raised.
    Check if a string is passed, a TypeError is raised.
    """
    true_cov = np.array(
        [
            [0.8, 0.0, 0.2, 0.0],
            [0.0, 0.4, 0.0, 0.0],
            [0.2, 0.0, 0.3, 0.1],
            [0.0, 0.0, 0.1, 0.7],
        ]
    )
    rng = np.random.RandomState(0)
    X = rng.multivariate_normal(mean=[0, 0, 0, 0], cov=true_cov, size=200)

    with pytest.raises(err_type, match=err_msg):
        GraphicalLassoCV(alphas=alphas, tol=1e-1, n_jobs=1).fit(X)


def test_graphical_lasso_cv_scores():
    splits = 4
    n_alphas = 5
    n_refinements = 3
    true_cov = np.array(
        [
            [0.8, 0.0, 0.2, 0.0],
            [0.0, 0.4, 0.0, 0.0],
            [0.2, 0.0, 0.3, 0.1],
            [0.0, 0.0, 0.1, 0.7],
        ]
    )
    rng = np.random.RandomState(0)
    X = rng.multivariate_normal(mean=[0, 0, 0, 0], cov=true_cov, size=200)
    cov = GraphicalLassoCV(cv=splits, alphas=n_alphas, n_refinements=n_refinements).fit(
        X
    )

    cv_results = cov.cv_results_
    # alpha and one for each split

    total_alphas = n_refinements * n_alphas + 1
    keys = ["alphas"]
    split_keys = [f"split{i}_test_score" for i in range(splits)]
    for key in keys + split_keys:
        assert key in cv_results
        assert len(cv_results[key]) == total_alphas

    cv_scores = np.asarray([cov.cv_results_[key] for key in split_keys])
    expected_mean = cv_scores.mean(axis=0)
    expected_std = cv_scores.std(axis=0)

    assert_allclose(cov.cv_results_["mean_test_score"], expected_mean)
    assert_allclose(cov.cv_results_["std_test_score"], expected_std)