File: _olivetti_faces.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (148 lines) | stat: -rw-r--r-- 5,028 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""Modified Olivetti faces dataset.

The original database was available from (now defunct)

    https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

The version retrieved here comes in MATLAB format from the personal
web page of Sam Roweis:

    https://cs.nyu.edu/~roweis/
"""

# Copyright (c) 2011 David Warde-Farley <wardefar at iro dot umontreal dot ca>
# License: BSD 3 clause

from os.path import exists
from os import makedirs, remove

import numpy as np
from scipy.io import loadmat
import joblib

from . import get_data_home
from ._base import _fetch_remote
from ._base import RemoteFileMetadata
from ._base import _pkl_filepath
from ._base import load_descr
from ..utils import check_random_state, Bunch

# The original data can be found at:
# https://cs.nyu.edu/~roweis/data/olivettifaces.mat
FACES = RemoteFileMetadata(
    filename="olivettifaces.mat",
    url="https://ndownloader.figshare.com/files/5976027",
    checksum="b612fb967f2dc77c9c62d3e1266e0c73d5fca46a4b8906c18e454d41af987794",
)


def fetch_olivetti_faces(
    *,
    data_home=None,
    shuffle=False,
    random_state=0,
    download_if_missing=True,
    return_X_y=False,
):
    """Load the Olivetti faces data-set from AT&T (classification).

    Download it if necessary.

    =================   =====================
    Classes                                40
    Samples total                         400
    Dimensionality                       4096
    Features            real, between 0 and 1
    =================   =====================

    Read more in the :ref:`User Guide <olivetti_faces_dataset>`.

    Parameters
    ----------
    data_home : str, default=None
        Specify another download and cache folder for the datasets. By default
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.

    shuffle : bool, default=False
        If True the order of the dataset is shuffled to avoid having
        images of the same person grouped.

    random_state : int, RandomState instance or None, default=0
        Determines random number generation for dataset shuffling. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    download_if_missing : bool, default=True
        If False, raise a IOError if the data is not locally available
        instead of trying to download the data from the source site.

    return_X_y : bool, default=False
        If True, returns `(data, target)` instead of a `Bunch` object. See
        below for more information about the `data` and `target` object.

        .. versionadded:: 0.22

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data: ndarray, shape (400, 4096)
            Each row corresponds to a ravelled
            face image of original size 64 x 64 pixels.
        images : ndarray, shape (400, 64, 64)
            Each row is a face image
            corresponding to one of the 40 subjects of the dataset.
        target : ndarray, shape (400,)
            Labels associated to each face image.
            Those labels are ranging from 0-39 and correspond to the
            Subject IDs.
        DESCR : str
            Description of the modified Olivetti Faces Dataset.

    (data, target) : tuple if `return_X_y=True`
        Tuple with the `data` and `target` objects described above.

        .. versionadded:: 0.22
    """
    data_home = get_data_home(data_home=data_home)
    if not exists(data_home):
        makedirs(data_home)
    filepath = _pkl_filepath(data_home, "olivetti.pkz")
    if not exists(filepath):
        if not download_if_missing:
            raise IOError("Data not found and `download_if_missing` is False")

        print("downloading Olivetti faces from %s to %s" % (FACES.url, data_home))
        mat_path = _fetch_remote(FACES, dirname=data_home)
        mfile = loadmat(file_name=mat_path)
        # delete raw .mat data
        remove(mat_path)

        faces = mfile["faces"].T.copy()
        joblib.dump(faces, filepath, compress=6)
        del mfile
    else:
        faces = joblib.load(filepath)

    # We want floating point data, but float32 is enough (there is only
    # one byte of precision in the original uint8s anyway)
    faces = np.float32(faces)
    faces = faces - faces.min()
    faces /= faces.max()
    faces = faces.reshape((400, 64, 64)).transpose(0, 2, 1)
    # 10 images per class, 400 images total, each class is contiguous.
    target = np.array([i // 10 for i in range(400)])
    if shuffle:
        random_state = check_random_state(random_state)
        order = random_state.permutation(len(faces))
        faces = faces[order]
        target = target[order]
    faces_vectorized = faces.reshape(len(faces), -1)

    fdescr = load_descr("olivetti_faces.rst")

    if return_X_y:
        return faces_vectorized, target

    return Bunch(data=faces_vectorized, images=faces, target=target, DESCR=fdescr)