File: __init__.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (53 lines) | stat: -rw-r--r-- 1,297 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
The :mod:`sklearn.decomposition` module includes matrix decomposition
algorithms, including among others PCA, NMF or ICA. Most of the algorithms of
this module can be regarded as dimensionality reduction techniques.
"""


from ._nmf import (
    NMF,
    MiniBatchNMF,
    non_negative_factorization,
)
from ._pca import PCA
from ._incremental_pca import IncrementalPCA
from ._kernel_pca import KernelPCA
from ._sparse_pca import SparsePCA, MiniBatchSparsePCA
from ._truncated_svd import TruncatedSVD
from ._fastica import FastICA, fastica
from ._dict_learning import (
    dict_learning,
    dict_learning_online,
    sparse_encode,
    DictionaryLearning,
    MiniBatchDictionaryLearning,
    SparseCoder,
)
from ._factor_analysis import FactorAnalysis
from ..utils.extmath import randomized_svd
from ._lda import LatentDirichletAllocation


__all__ = [
    "DictionaryLearning",
    "FastICA",
    "IncrementalPCA",
    "KernelPCA",
    "MiniBatchDictionaryLearning",
    "MiniBatchNMF",
    "MiniBatchSparsePCA",
    "NMF",
    "PCA",
    "SparseCoder",
    "SparsePCA",
    "dict_learning",
    "dict_learning_online",
    "fastica",
    "non_negative_factorization",
    "randomized_svd",
    "sparse_encode",
    "FactorAnalysis",
    "TruncatedSVD",
    "LatentDirichletAllocation",
]