1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
"""Principal Component Analysis Base Classes"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Denis A. Engemann <denis-alexander.engemann@inria.fr>
# Kyle Kastner <kastnerkyle@gmail.com>
#
# License: BSD 3 clause
import numpy as np
from scipy import linalg
from ..base import BaseEstimator, TransformerMixin, ClassNamePrefixFeaturesOutMixin
from ..utils.validation import check_is_fitted
from abc import ABCMeta, abstractmethod
class _BasePCA(
ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator, metaclass=ABCMeta
):
"""Base class for PCA methods.
Warning: This class should not be used directly.
Use derived classes instead.
"""
def get_covariance(self):
"""Compute data covariance with the generative model.
``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)``
where S**2 contains the explained variances, and sigma2 contains the
noise variances.
Returns
-------
cov : array of shape=(n_features, n_features)
Estimated covariance of data.
"""
components_ = self.components_
exp_var = self.explained_variance_
if self.whiten:
components_ = components_ * np.sqrt(exp_var[:, np.newaxis])
exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.0)
cov = np.dot(components_.T * exp_var_diff, components_)
cov.flat[:: len(cov) + 1] += self.noise_variance_ # modify diag inplace
return cov
def get_precision(self):
"""Compute data precision matrix with the generative model.
Equals the inverse of the covariance but computed with
the matrix inversion lemma for efficiency.
Returns
-------
precision : array, shape=(n_features, n_features)
Estimated precision of data.
"""
n_features = self.components_.shape[1]
# handle corner cases first
if self.n_components_ == 0:
return np.eye(n_features) / self.noise_variance_
if np.isclose(self.noise_variance_, 0.0, atol=0.0):
return linalg.inv(self.get_covariance())
# Get precision using matrix inversion lemma
components_ = self.components_
exp_var = self.explained_variance_
if self.whiten:
components_ = components_ * np.sqrt(exp_var[:, np.newaxis])
exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.0)
precision = np.dot(components_, components_.T) / self.noise_variance_
precision.flat[:: len(precision) + 1] += 1.0 / exp_var_diff
precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_))
precision /= -(self.noise_variance_**2)
precision.flat[:: len(precision) + 1] += 1.0 / self.noise_variance_
return precision
@abstractmethod
def fit(self, X, y=None):
"""Placeholder for fit. Subclasses should implement this method!
Fit the model with X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples and
`n_features` is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
def transform(self, X):
"""Apply dimensionality reduction to X.
X is projected on the first principal components previously extracted
from a training set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
New data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Returns
-------
X_new : array-like of shape (n_samples, n_components)
Projection of X in the first principal components, where `n_samples`
is the number of samples and `n_components` is the number of the components.
"""
check_is_fitted(self)
X = self._validate_data(X, dtype=[np.float64, np.float32], reset=False)
if self.mean_ is not None:
X = X - self.mean_
X_transformed = np.dot(X, self.components_.T)
if self.whiten:
X_transformed /= np.sqrt(self.explained_variance_)
return X_transformed
def inverse_transform(self, X):
"""Transform data back to its original space.
In other words, return an input `X_original` whose transform would be X.
Parameters
----------
X : array-like of shape (n_samples, n_components)
New data, where `n_samples` is the number of samples
and `n_components` is the number of components.
Returns
-------
X_original array-like of shape (n_samples, n_features)
Original data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Notes
-----
If whitening is enabled, inverse_transform will compute the
exact inverse operation, which includes reversing whitening.
"""
if self.whiten:
return (
np.dot(
X,
np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_,
)
+ self.mean_
)
else:
return np.dot(X, self.components_) + self.mean_
@property
def _n_features_out(self):
"""Number of transformed output features."""
return self.components_.shape[0]
|