File: __init__.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (47 lines) | stat: -rw-r--r-- 1,502 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
The :mod:`sklearn.ensemble` module includes ensemble-based methods for
classification, regression and anomaly detection.
"""
from ._base import BaseEnsemble
from ._forest import RandomForestClassifier
from ._forest import RandomForestRegressor
from ._forest import RandomTreesEmbedding
from ._forest import ExtraTreesClassifier
from ._forest import ExtraTreesRegressor
from ._bagging import BaggingClassifier
from ._bagging import BaggingRegressor
from ._iforest import IsolationForest
from ._weight_boosting import AdaBoostClassifier
from ._weight_boosting import AdaBoostRegressor
from ._gb import GradientBoostingClassifier
from ._gb import GradientBoostingRegressor
from ._voting import VotingClassifier
from ._voting import VotingRegressor
from ._stacking import StackingClassifier
from ._stacking import StackingRegressor
from ._hist_gradient_boosting.gradient_boosting import (
    HistGradientBoostingRegressor,
    HistGradientBoostingClassifier,
)

__all__ = [
    "BaseEnsemble",
    "RandomForestClassifier",
    "RandomForestRegressor",
    "RandomTreesEmbedding",
    "ExtraTreesClassifier",
    "ExtraTreesRegressor",
    "BaggingClassifier",
    "BaggingRegressor",
    "IsolationForest",
    "GradientBoostingClassifier",
    "GradientBoostingRegressor",
    "AdaBoostClassifier",
    "AdaBoostRegressor",
    "VotingClassifier",
    "VotingRegressor",
    "StackingClassifier",
    "StackingRegressor",
    "HistGradientBoostingClassifier",
    "HistGradientBoostingRegressor",
]