1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
"""This module contains routines for building histograms."""
# Author: Nicolas Hug
cimport cython
from cython.parallel import prange
import numpy as np
from .common import HISTOGRAM_DTYPE
from .common cimport hist_struct
from .common cimport X_BINNED_DTYPE_C
from .common cimport G_H_DTYPE_C
# Notes:
# - IN views are read-only, OUT views are write-only
# - In a lot of functions here, we pass feature_idx and the whole 2d
# histograms arrays instead of just histograms[feature_idx]. This is because
# Cython generated C code will have strange Python interactions (likely
# related to the GIL release and the custom histogram dtype) when using 1d
# histogram arrays that come from 2d arrays.
# - The for loops are un-wrapped, for example:
#
# for i in range(n):
# array[i] = i
#
# will become
#
# for i in range(n // 4):
# array[i] = i
# array[i + 1] = i + 1
# array[i + 2] = i + 2
# array[i + 3] = i + 3
#
# This is to hint gcc that it can auto-vectorize these 4 operations and
# perform them all at once.
@cython.final
cdef class HistogramBuilder:
"""A Histogram builder... used to build histograms.
A histogram is an array with n_bins entries of type HISTOGRAM_DTYPE. Each
feature has its own histogram. A histogram contains the sum of gradients
and hessians of all the samples belonging to each bin.
There are different ways to build a histogram:
- by subtraction: hist(child) = hist(parent) - hist(sibling)
- from scratch. In this case we have routines that update the hessians
or not (not useful when hessians are constant for some losses e.g.
least squares). Also, there's a special case for the root which
contains all the samples, leading to some possible optimizations.
Overall all the implementations look the same, and are optimized for
cache hit.
Parameters
----------
X_binned : ndarray of int, shape (n_samples, n_features)
The binned input samples. Must be Fortran-aligned.
n_bins : int
The total number of bins, including the bin for missing values. Used
to define the shape of the histograms.
gradients : ndarray, shape (n_samples,)
The gradients of each training sample. Those are the gradients of the
loss w.r.t the predictions, evaluated at iteration i - 1.
hessians : ndarray, shape (n_samples,)
The hessians of each training sample. Those are the hessians of the
loss w.r.t the predictions, evaluated at iteration i - 1.
hessians_are_constant : bool
Whether hessians are constant.
"""
cdef public:
const X_BINNED_DTYPE_C [::1, :] X_binned
unsigned int n_features
unsigned int n_bins
G_H_DTYPE_C [::1] gradients
G_H_DTYPE_C [::1] hessians
G_H_DTYPE_C [::1] ordered_gradients
G_H_DTYPE_C [::1] ordered_hessians
unsigned char hessians_are_constant
int n_threads
def __init__(self, const X_BINNED_DTYPE_C [::1, :] X_binned,
unsigned int n_bins, G_H_DTYPE_C [::1] gradients,
G_H_DTYPE_C [::1] hessians,
unsigned char hessians_are_constant,
int n_threads):
self.X_binned = X_binned
self.n_features = X_binned.shape[1]
# Note: all histograms will have <n_bins> bins, but some of the
# bins may be unused if a feature has a small number of unique values.
self.n_bins = n_bins
self.gradients = gradients
self.hessians = hessians
# for root node, gradients and hessians are already ordered
self.ordered_gradients = gradients.copy()
self.ordered_hessians = hessians.copy()
self.hessians_are_constant = hessians_are_constant
self.n_threads = n_threads
def compute_histograms_brute(
HistogramBuilder self,
const unsigned int [::1] sample_indices, # IN
const unsigned int [:] allowed_features=None, # IN
):
"""Compute the histograms of the node by scanning through all the data.
For a given feature, the complexity is O(n_samples)
Parameters
----------
sample_indices : array of int, shape (n_samples_at_node,)
The indices of the samples at the node to split.
allowed_features : None or ndarray, dtype=np.uint32
Indices of the features that are allowed by interaction constraints to be
split.
Returns
-------
histograms : ndarray of HISTOGRAM_DTYPE, shape (n_features, n_bins)
The computed histograms of the current node.
"""
cdef:
int n_samples
int feature_idx
int f_idx
int i
# need local views to avoid python interactions
unsigned char hessians_are_constant = \
self.hessians_are_constant
int n_features = self.n_features
int n_allowed_features = self.n_features
G_H_DTYPE_C [::1] ordered_gradients = self.ordered_gradients
G_H_DTYPE_C [::1] gradients = self.gradients
G_H_DTYPE_C [::1] ordered_hessians = self.ordered_hessians
G_H_DTYPE_C [::1] hessians = self.hessians
# Histograms will be initialized to zero later within a prange
hist_struct [:, ::1] histograms = np.empty(
shape=(self.n_features, self.n_bins),
dtype=HISTOGRAM_DTYPE
)
bint has_interaction_cst = allowed_features is not None
int n_threads = self.n_threads
if has_interaction_cst:
n_allowed_features = allowed_features.shape[0]
with nogil:
n_samples = sample_indices.shape[0]
# Populate ordered_gradients and ordered_hessians. (Already done
# for root) Ordering the gradients and hessians helps to improve
# cache hit.
if sample_indices.shape[0] != gradients.shape[0]:
if hessians_are_constant:
for i in prange(n_samples, schedule='static',
num_threads=n_threads):
ordered_gradients[i] = gradients[sample_indices[i]]
else:
for i in prange(n_samples, schedule='static',
num_threads=n_threads):
ordered_gradients[i] = gradients[sample_indices[i]]
ordered_hessians[i] = hessians[sample_indices[i]]
# Compute histogram of each feature
for f_idx in prange(
n_allowed_features, schedule='static', num_threads=n_threads
):
if has_interaction_cst:
feature_idx = allowed_features[f_idx]
else:
feature_idx = f_idx
self._compute_histogram_brute_single_feature(
feature_idx, sample_indices, histograms
)
return histograms
cdef void _compute_histogram_brute_single_feature(
HistogramBuilder self,
const int feature_idx,
const unsigned int [::1] sample_indices, # IN
hist_struct [:, ::1] histograms) nogil: # OUT
"""Compute the histogram for a given feature."""
cdef:
unsigned int n_samples = sample_indices.shape[0]
const X_BINNED_DTYPE_C [::1] X_binned = \
self.X_binned[:, feature_idx]
unsigned int root_node = X_binned.shape[0] == n_samples
G_H_DTYPE_C [::1] ordered_gradients = \
self.ordered_gradients[:n_samples]
G_H_DTYPE_C [::1] ordered_hessians = \
self.ordered_hessians[:n_samples]
unsigned char hessians_are_constant = \
self.hessians_are_constant
unsigned int bin_idx = 0
for bin_idx in range(self.n_bins):
histograms[feature_idx, bin_idx].sum_gradients = 0.
histograms[feature_idx, bin_idx].sum_hessians = 0.
histograms[feature_idx, bin_idx].count = 0
if root_node:
if hessians_are_constant:
_build_histogram_root_no_hessian(feature_idx, X_binned,
ordered_gradients,
histograms)
else:
_build_histogram_root(feature_idx, X_binned,
ordered_gradients, ordered_hessians,
histograms)
else:
if hessians_are_constant:
_build_histogram_no_hessian(feature_idx,
sample_indices, X_binned,
ordered_gradients, histograms)
else:
_build_histogram(feature_idx, sample_indices,
X_binned, ordered_gradients,
ordered_hessians, histograms)
def compute_histograms_subtraction(
HistogramBuilder self,
hist_struct [:, ::1] parent_histograms, # IN
hist_struct [:, ::1] sibling_histograms, # IN
const unsigned int [:] allowed_features=None, # IN
):
"""Compute the histograms of the node using the subtraction trick.
hist(parent) = hist(left_child) + hist(right_child)
For a given feature, the complexity is O(n_bins). This is much more
efficient than compute_histograms_brute, but it's only possible for one
of the siblings.
Parameters
----------
parent_histograms : ndarray of HISTOGRAM_DTYPE, \
shape (n_features, n_bins)
The histograms of the parent.
sibling_histograms : ndarray of HISTOGRAM_DTYPE, \
shape (n_features, n_bins)
The histograms of the sibling.
allowed_features : None or ndarray, dtype=np.uint32
Indices of the features that are allowed by interaction constraints to be
split.
Returns
-------
histograms : ndarray of HISTOGRAM_DTYPE, shape(n_features, n_bins)
The computed histograms of the current node.
"""
cdef:
int feature_idx
int f_idx
int n_features = self.n_features
int n_allowed_features = self.n_features
hist_struct [:, ::1] histograms = np.empty(
shape=(self.n_features, self.n_bins),
dtype=HISTOGRAM_DTYPE
)
bint has_interaction_cst = allowed_features is not None
int n_threads = self.n_threads
if has_interaction_cst:
n_allowed_features = allowed_features.shape[0]
# Compute histogram of each feature
for f_idx in prange(n_allowed_features, schedule='static', nogil=True,
num_threads=n_threads):
if has_interaction_cst:
feature_idx = allowed_features[f_idx]
else:
feature_idx = f_idx
_subtract_histograms(
feature_idx,
self.n_bins,
parent_histograms,
sibling_histograms,
histograms,
)
return histograms
cpdef void _build_histogram_naive(
const int feature_idx,
unsigned int [:] sample_indices, # IN
X_BINNED_DTYPE_C [:] binned_feature, # IN
G_H_DTYPE_C [:] ordered_gradients, # IN
G_H_DTYPE_C [:] ordered_hessians, # IN
hist_struct [:, :] out) nogil: # OUT
"""Build histogram in a naive way, without optimizing for cache hit.
Used in tests to compare with the optimized version."""
cdef:
unsigned int i
unsigned int n_samples = sample_indices.shape[0]
unsigned int sample_idx
unsigned int bin_idx
for i in range(n_samples):
sample_idx = sample_indices[i]
bin_idx = binned_feature[sample_idx]
out[feature_idx, bin_idx].sum_gradients += ordered_gradients[i]
out[feature_idx, bin_idx].sum_hessians += ordered_hessians[i]
out[feature_idx, bin_idx].count += 1
cpdef void _subtract_histograms(
const int feature_idx,
unsigned int n_bins,
hist_struct [:, ::1] hist_a, # IN
hist_struct [:, ::1] hist_b, # IN
hist_struct [:, ::1] out) nogil: # OUT
"""compute (hist_a - hist_b) in out"""
cdef:
unsigned int i = 0
for i in range(n_bins):
out[feature_idx, i].sum_gradients = (
hist_a[feature_idx, i].sum_gradients -
hist_b[feature_idx, i].sum_gradients
)
out[feature_idx, i].sum_hessians = (
hist_a[feature_idx, i].sum_hessians -
hist_b[feature_idx, i].sum_hessians
)
out[feature_idx, i].count = (
hist_a[feature_idx, i].count -
hist_b[feature_idx, i].count
)
cpdef void _build_histogram(
const int feature_idx,
const unsigned int [::1] sample_indices, # IN
const X_BINNED_DTYPE_C [::1] binned_feature, # IN
const G_H_DTYPE_C [::1] ordered_gradients, # IN
const G_H_DTYPE_C [::1] ordered_hessians, # IN
hist_struct [:, ::1] out) nogil: # OUT
"""Return histogram for a given feature."""
cdef:
unsigned int i = 0
unsigned int n_node_samples = sample_indices.shape[0]
unsigned int unrolled_upper = (n_node_samples // 4) * 4
unsigned int bin_0
unsigned int bin_1
unsigned int bin_2
unsigned int bin_3
unsigned int bin_idx
for i in range(0, unrolled_upper, 4):
bin_0 = binned_feature[sample_indices[i]]
bin_1 = binned_feature[sample_indices[i + 1]]
bin_2 = binned_feature[sample_indices[i + 2]]
bin_3 = binned_feature[sample_indices[i + 3]]
out[feature_idx, bin_0].sum_gradients += ordered_gradients[i]
out[feature_idx, bin_1].sum_gradients += ordered_gradients[i + 1]
out[feature_idx, bin_2].sum_gradients += ordered_gradients[i + 2]
out[feature_idx, bin_3].sum_gradients += ordered_gradients[i + 3]
out[feature_idx, bin_0].sum_hessians += ordered_hessians[i]
out[feature_idx, bin_1].sum_hessians += ordered_hessians[i + 1]
out[feature_idx, bin_2].sum_hessians += ordered_hessians[i + 2]
out[feature_idx, bin_3].sum_hessians += ordered_hessians[i + 3]
out[feature_idx, bin_0].count += 1
out[feature_idx, bin_1].count += 1
out[feature_idx, bin_2].count += 1
out[feature_idx, bin_3].count += 1
for i in range(unrolled_upper, n_node_samples):
bin_idx = binned_feature[sample_indices[i]]
out[feature_idx, bin_idx].sum_gradients += ordered_gradients[i]
out[feature_idx, bin_idx].sum_hessians += ordered_hessians[i]
out[feature_idx, bin_idx].count += 1
cpdef void _build_histogram_no_hessian(
const int feature_idx,
const unsigned int [::1] sample_indices, # IN
const X_BINNED_DTYPE_C [::1] binned_feature, # IN
const G_H_DTYPE_C [::1] ordered_gradients, # IN
hist_struct [:, ::1] out) nogil: # OUT
"""Return histogram for a given feature, not updating hessians.
Used when the hessians of the loss are constant (typically LS loss).
"""
cdef:
unsigned int i = 0
unsigned int n_node_samples = sample_indices.shape[0]
unsigned int unrolled_upper = (n_node_samples // 4) * 4
unsigned int bin_0
unsigned int bin_1
unsigned int bin_2
unsigned int bin_3
unsigned int bin_idx
for i in range(0, unrolled_upper, 4):
bin_0 = binned_feature[sample_indices[i]]
bin_1 = binned_feature[sample_indices[i + 1]]
bin_2 = binned_feature[sample_indices[i + 2]]
bin_3 = binned_feature[sample_indices[i + 3]]
out[feature_idx, bin_0].sum_gradients += ordered_gradients[i]
out[feature_idx, bin_1].sum_gradients += ordered_gradients[i + 1]
out[feature_idx, bin_2].sum_gradients += ordered_gradients[i + 2]
out[feature_idx, bin_3].sum_gradients += ordered_gradients[i + 3]
out[feature_idx, bin_0].count += 1
out[feature_idx, bin_1].count += 1
out[feature_idx, bin_2].count += 1
out[feature_idx, bin_3].count += 1
for i in range(unrolled_upper, n_node_samples):
bin_idx = binned_feature[sample_indices[i]]
out[feature_idx, bin_idx].sum_gradients += ordered_gradients[i]
out[feature_idx, bin_idx].count += 1
cpdef void _build_histogram_root(
const int feature_idx,
const X_BINNED_DTYPE_C [::1] binned_feature, # IN
const G_H_DTYPE_C [::1] all_gradients, # IN
const G_H_DTYPE_C [::1] all_hessians, # IN
hist_struct [:, ::1] out) nogil: # OUT
"""Compute histogram of the root node.
Unlike other nodes, the root node has to find the split among *all* the
samples from the training set. binned_feature and all_gradients /
all_hessians already have a consistent ordering.
"""
cdef:
unsigned int i = 0
unsigned int n_samples = binned_feature.shape[0]
unsigned int unrolled_upper = (n_samples // 4) * 4
unsigned int bin_0
unsigned int bin_1
unsigned int bin_2
unsigned int bin_3
unsigned int bin_idx
for i in range(0, unrolled_upper, 4):
bin_0 = binned_feature[i]
bin_1 = binned_feature[i + 1]
bin_2 = binned_feature[i + 2]
bin_3 = binned_feature[i + 3]
out[feature_idx, bin_0].sum_gradients += all_gradients[i]
out[feature_idx, bin_1].sum_gradients += all_gradients[i + 1]
out[feature_idx, bin_2].sum_gradients += all_gradients[i + 2]
out[feature_idx, bin_3].sum_gradients += all_gradients[i + 3]
out[feature_idx, bin_0].sum_hessians += all_hessians[i]
out[feature_idx, bin_1].sum_hessians += all_hessians[i + 1]
out[feature_idx, bin_2].sum_hessians += all_hessians[i + 2]
out[feature_idx, bin_3].sum_hessians += all_hessians[i + 3]
out[feature_idx, bin_0].count += 1
out[feature_idx, bin_1].count += 1
out[feature_idx, bin_2].count += 1
out[feature_idx, bin_3].count += 1
for i in range(unrolled_upper, n_samples):
bin_idx = binned_feature[i]
out[feature_idx, bin_idx].sum_gradients += all_gradients[i]
out[feature_idx, bin_idx].sum_hessians += all_hessians[i]
out[feature_idx, bin_idx].count += 1
cpdef void _build_histogram_root_no_hessian(
const int feature_idx,
const X_BINNED_DTYPE_C [::1] binned_feature, # IN
const G_H_DTYPE_C [::1] all_gradients, # IN
hist_struct [:, ::1] out) nogil: # OUT
"""Compute histogram of the root node, not updating hessians.
Used when the hessians of the loss are constant (typically LS loss).
"""
cdef:
unsigned int i = 0
unsigned int n_samples = binned_feature.shape[0]
unsigned int unrolled_upper = (n_samples // 4) * 4
unsigned int bin_0
unsigned int bin_1
unsigned int bin_2
unsigned int bin_3
unsigned int bin_idx
for i in range(0, unrolled_upper, 4):
bin_0 = binned_feature[i]
bin_1 = binned_feature[i + 1]
bin_2 = binned_feature[i + 2]
bin_3 = binned_feature[i + 3]
out[feature_idx, bin_0].sum_gradients += all_gradients[i]
out[feature_idx, bin_1].sum_gradients += all_gradients[i + 1]
out[feature_idx, bin_2].sum_gradients += all_gradients[i + 2]
out[feature_idx, bin_3].sum_gradients += all_gradients[i + 3]
out[feature_idx, bin_0].count += 1
out[feature_idx, bin_1].count += 1
out[feature_idx, bin_2].count += 1
out[feature_idx, bin_3].count += 1
for i in range(unrolled_upper, n_samples):
bin_idx = binned_feature[i]
out[feature_idx, bin_idx].sum_gradients += all_gradients[i]
out[feature_idx, bin_idx].count += 1
|