1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
|
"""This module contains routines and data structures to:
- Find the best possible split of a node. For a given node, a split is
characterized by a feature and a bin.
- Apply a split to a node, i.e. split the indices of the samples at the node
into the newly created left and right children.
"""
# Author: Nicolas Hug
cimport cython
from cython.parallel import prange
import numpy as np
from libc.stdlib cimport malloc, free, qsort
from libc.string cimport memcpy
from numpy.math cimport INFINITY
from .common cimport X_BINNED_DTYPE_C
from .common cimport Y_DTYPE_C
from .common cimport hist_struct
from .common cimport BITSET_INNER_DTYPE_C
from .common cimport BITSET_DTYPE_C
from .common cimport MonotonicConstraint
from ._bitset cimport init_bitset
from ._bitset cimport set_bitset
from ._bitset cimport in_bitset
cdef struct split_info_struct:
# Same as the SplitInfo class, but we need a C struct to use it in the
# nogil sections and to use in arrays.
Y_DTYPE_C gain
int feature_idx
unsigned int bin_idx
unsigned char missing_go_to_left
Y_DTYPE_C sum_gradient_left
Y_DTYPE_C sum_gradient_right
Y_DTYPE_C sum_hessian_left
Y_DTYPE_C sum_hessian_right
unsigned int n_samples_left
unsigned int n_samples_right
Y_DTYPE_C value_left
Y_DTYPE_C value_right
unsigned char is_categorical
BITSET_DTYPE_C left_cat_bitset
# used in categorical splits for sorting categories by increasing values of
# sum_gradients / sum_hessians
cdef struct categorical_info:
X_BINNED_DTYPE_C bin_idx
Y_DTYPE_C value
class SplitInfo:
"""Pure data class to store information about a potential split.
Parameters
----------
gain : float
The gain of the split.
feature_idx : int
The index of the feature to be split.
bin_idx : int
The index of the bin on which the split is made. Should be ignored if
`is_categorical` is True: `left_cat_bitset` will be used to determine
the split.
missing_go_to_left : bool
Whether missing values should go to the left child. This is used
whether the split is categorical or not.
sum_gradient_left : float
The sum of the gradients of all the samples in the left child.
sum_hessian_left : float
The sum of the hessians of all the samples in the left child.
sum_gradient_right : float
The sum of the gradients of all the samples in the right child.
sum_hessian_right : float
The sum of the hessians of all the samples in the right child.
n_samples_left : int, default=0
The number of samples in the left child.
n_samples_right : int
The number of samples in the right child.
is_categorical : bool
Whether the split is done on a categorical feature.
left_cat_bitset : ndarray of shape=(8,), dtype=uint32 or None
Bitset representing the categories that go to the left. This is used
only when `is_categorical` is True.
Note that missing values are part of that bitset if there are missing
values in the training data. For missing values, we rely on that
bitset for splitting, but at prediction time, we rely on
missing_go_to_left.
"""
def __init__(self, gain, feature_idx, bin_idx,
missing_go_to_left, sum_gradient_left, sum_hessian_left,
sum_gradient_right, sum_hessian_right, n_samples_left,
n_samples_right, value_left, value_right,
is_categorical, left_cat_bitset):
self.gain = gain
self.feature_idx = feature_idx
self.bin_idx = bin_idx
self.missing_go_to_left = missing_go_to_left
self.sum_gradient_left = sum_gradient_left
self.sum_hessian_left = sum_hessian_left
self.sum_gradient_right = sum_gradient_right
self.sum_hessian_right = sum_hessian_right
self.n_samples_left = n_samples_left
self.n_samples_right = n_samples_right
self.value_left = value_left
self.value_right = value_right
self.is_categorical = is_categorical
self.left_cat_bitset = left_cat_bitset
@cython.final
cdef class Splitter:
"""Splitter used to find the best possible split at each node.
A split (see SplitInfo) is characterized by a feature and a bin.
The Splitter is also responsible for partitioning the samples among the
leaves of the tree (see split_indices() and the partition attribute).
Parameters
----------
X_binned : ndarray of int, shape (n_samples, n_features)
The binned input samples. Must be Fortran-aligned.
n_bins_non_missing : ndarray, shape (n_features,)
For each feature, gives the number of bins actually used for
non-missing values.
missing_values_bin_idx : uint8
Index of the bin that is used for missing values. This is the index of
the last bin and is always equal to max_bins (as passed to the GBDT
classes), or equivalently to n_bins - 1.
has_missing_values : ndarray, shape (n_features,)
Whether missing values were observed in the training data, for each
feature.
is_categorical : ndarray of bool of shape (n_features,)
Indicates categorical features.
monotonic_cst : ndarray of int of shape (n_features,), dtype=int
Indicates the monotonic constraint to enforce on each feature.
- 1: monotonic increase
- 0: no constraint
- -1: monotonic decrease
Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.
l2_regularization : float
The L2 regularization parameter.
min_hessian_to_split : float, default=1e-3
The minimum sum of hessians needed in each node. Splits that result in
at least one child having a sum of hessians less than
min_hessian_to_split are discarded.
min_samples_leaf : int, default=20
The minimum number of samples per leaf.
min_gain_to_split : float, default=0.0
The minimum gain needed to split a node. Splits with lower gain will
be ignored.
hessians_are_constant: bool, default is False
Whether hessians are constant.
n_threads : int, default=1
Number of OpenMP threads to use.
"""
cdef public:
const X_BINNED_DTYPE_C [::1, :] X_binned
unsigned int n_features
const unsigned int [::1] n_bins_non_missing
unsigned char missing_values_bin_idx
const unsigned char [::1] has_missing_values
const unsigned char [::1] is_categorical
const signed char [::1] monotonic_cst
unsigned char hessians_are_constant
Y_DTYPE_C l2_regularization
Y_DTYPE_C min_hessian_to_split
unsigned int min_samples_leaf
Y_DTYPE_C min_gain_to_split
unsigned int [::1] partition
unsigned int [::1] left_indices_buffer
unsigned int [::1] right_indices_buffer
int n_threads
def __init__(self,
const X_BINNED_DTYPE_C [::1, :] X_binned,
const unsigned int [::1] n_bins_non_missing,
const unsigned char missing_values_bin_idx,
const unsigned char [::1] has_missing_values,
const unsigned char [::1] is_categorical,
const signed char [::1] monotonic_cst,
Y_DTYPE_C l2_regularization,
Y_DTYPE_C min_hessian_to_split=1e-3,
unsigned int min_samples_leaf=20,
Y_DTYPE_C min_gain_to_split=0.,
unsigned char hessians_are_constant=False,
unsigned int n_threads=1):
self.X_binned = X_binned
self.n_features = X_binned.shape[1]
self.n_bins_non_missing = n_bins_non_missing
self.missing_values_bin_idx = missing_values_bin_idx
self.has_missing_values = has_missing_values
self.monotonic_cst = monotonic_cst
self.is_categorical = is_categorical
self.l2_regularization = l2_regularization
self.min_hessian_to_split = min_hessian_to_split
self.min_samples_leaf = min_samples_leaf
self.min_gain_to_split = min_gain_to_split
self.hessians_are_constant = hessians_are_constant
self.n_threads = n_threads
# The partition array maps each sample index into the leaves of the
# tree (a leaf in this context is a node that isn't split yet, not
# necessarily a 'finalized' leaf). Initially, the root contains all
# the indices, e.g.:
# partition = [abcdefghijkl]
# After a call to split_indices, it may look e.g. like this:
# partition = [cef|abdghijkl]
# we have 2 leaves, the left one is at position 0 and the second one at
# position 3. The order of the samples is irrelevant.
self.partition = np.arange(X_binned.shape[0], dtype=np.uint32)
# buffers used in split_indices to support parallel splitting.
self.left_indices_buffer = np.empty_like(self.partition)
self.right_indices_buffer = np.empty_like(self.partition)
def split_indices(Splitter self, split_info, unsigned int [::1]
sample_indices):
"""Split samples into left and right arrays.
The split is performed according to the best possible split
(split_info).
Ultimately, this is nothing but a partition of the sample_indices
array with a given pivot, exactly like a quicksort subroutine.
Parameters
----------
split_info : SplitInfo
The SplitInfo of the node to split.
sample_indices : ndarray of unsigned int, shape (n_samples_at_node,)
The indices of the samples at the node to split. This is a view
on self.partition, and it is modified inplace by placing the
indices of the left child at the beginning, and the indices of
the right child at the end.
Returns
-------
left_indices : ndarray of int, shape (n_left_samples,)
The indices of the samples in the left child. This is a view on
self.partition.
right_indices : ndarray of int, shape (n_right_samples,)
The indices of the samples in the right child. This is a view on
self.partition.
right_child_position : int
The position of the right child in ``sample_indices``.
"""
# This is a multi-threaded implementation inspired by lightgbm. Here
# is a quick break down. Let's suppose we want to split a node with 24
# samples named from a to x. self.partition looks like this (the * are
# indices in other leaves that we don't care about):
# partition = [*************abcdefghijklmnopqrstuvwx****************]
# ^ ^
# node_position node_position + node.n_samples
# Ultimately, we want to reorder the samples inside the boundaries of
# the leaf (which becomes a node) to now represent the samples in its
# left and right child. For example:
# partition = [*************abefilmnopqrtuxcdghjksvw*****************]
# ^ ^
# left_child_pos right_child_pos
# Note that left_child_pos always takes the value of node_position,
# and right_child_pos = left_child_pos + left_child.n_samples. The
# order of the samples inside a leaf is irrelevant.
# 1. sample_indices is a view on this region a..x. We conceptually
# divide it into n_threads regions. Each thread will be responsible
# for its own region. Here is an example with 4 threads:
# sample_indices = [abcdef|ghijkl|mnopqr|stuvwx]
# 2. Each thread processes 6 = 24 // 4 entries and maps them into
# left_indices_buffer or right_indices_buffer. For example, we could
# have the following mapping ('.' denotes an undefined entry):
# - left_indices_buffer = [abef..|il....|mnopqr|tux...]
# - right_indices_buffer = [cd....|ghjk..|......|svw...]
# 3. We keep track of the start positions of the regions (the '|') in
# ``offset_in_buffers`` as well as the size of each region. We also
# keep track of the number of samples put into the left/right child
# by each thread. Concretely:
# - left_counts = [4, 2, 6, 3]
# - right_counts = [2, 4, 0, 3]
# 4. Finally, we put left/right_indices_buffer back into the
# sample_indices, without any undefined entries and the partition
# looks as expected
# partition = [*************abefilmnopqrtuxcdghjksvw***************]
# Note: We here show left/right_indices_buffer as being the same size
# as sample_indices for simplicity, but in reality they are of the
# same size as partition.
cdef:
int n_samples = sample_indices.shape[0]
X_BINNED_DTYPE_C bin_idx = split_info.bin_idx
unsigned char missing_go_to_left = split_info.missing_go_to_left
unsigned char missing_values_bin_idx = self.missing_values_bin_idx
int feature_idx = split_info.feature_idx
const X_BINNED_DTYPE_C [::1] X_binned = \
self.X_binned[:, feature_idx]
unsigned int [::1] left_indices_buffer = self.left_indices_buffer
unsigned int [::1] right_indices_buffer = self.right_indices_buffer
unsigned char is_categorical = split_info.is_categorical
# Cython is unhappy if we set left_cat_bitset to
# split_info.left_cat_bitset directly, so we need a tmp var
BITSET_INNER_DTYPE_C [:] cat_bitset_tmp = split_info.left_cat_bitset
BITSET_DTYPE_C left_cat_bitset
int n_threads = self.n_threads
int [:] sizes = np.full(n_threads, n_samples // n_threads,
dtype=np.int32)
int [:] offset_in_buffers = np.zeros(n_threads, dtype=np.int32)
int [:] left_counts = np.empty(n_threads, dtype=np.int32)
int [:] right_counts = np.empty(n_threads, dtype=np.int32)
int left_count
int right_count
int start
int stop
int i
int thread_idx
int sample_idx
int right_child_position
unsigned char turn_left
int [:] left_offset = np.zeros(n_threads, dtype=np.int32)
int [:] right_offset = np.zeros(n_threads, dtype=np.int32)
# only set left_cat_bitset when is_categorical is True
if is_categorical:
left_cat_bitset = &cat_bitset_tmp[0]
with nogil:
for thread_idx in range(n_samples % n_threads):
sizes[thread_idx] += 1
for thread_idx in range(1, n_threads):
offset_in_buffers[thread_idx] = \
offset_in_buffers[thread_idx - 1] + sizes[thread_idx - 1]
# map indices from sample_indices to left/right_indices_buffer
for thread_idx in prange(n_threads, schedule='static',
chunksize=1, num_threads=n_threads):
left_count = 0
right_count = 0
start = offset_in_buffers[thread_idx]
stop = start + sizes[thread_idx]
for i in range(start, stop):
sample_idx = sample_indices[i]
turn_left = sample_goes_left(
missing_go_to_left,
missing_values_bin_idx, bin_idx,
X_binned[sample_idx], is_categorical,
left_cat_bitset)
if turn_left:
left_indices_buffer[start + left_count] = sample_idx
left_count = left_count + 1
else:
right_indices_buffer[start + right_count] = sample_idx
right_count = right_count + 1
left_counts[thread_idx] = left_count
right_counts[thread_idx] = right_count
# position of right child = just after the left child
right_child_position = 0
for thread_idx in range(n_threads):
right_child_position += left_counts[thread_idx]
# offset of each thread in sample_indices for left and right
# child, i.e. where each thread will start to write.
right_offset[0] = right_child_position
for thread_idx in range(1, n_threads):
left_offset[thread_idx] = \
left_offset[thread_idx - 1] + left_counts[thread_idx - 1]
right_offset[thread_idx] = \
right_offset[thread_idx - 1] + right_counts[thread_idx - 1]
# map indices in left/right_indices_buffer back into
# sample_indices. This also updates self.partition since
# sample_indices is a view.
for thread_idx in prange(n_threads, schedule='static',
chunksize=1, num_threads=n_threads):
memcpy(
&sample_indices[left_offset[thread_idx]],
&left_indices_buffer[offset_in_buffers[thread_idx]],
sizeof(unsigned int) * left_counts[thread_idx]
)
if right_counts[thread_idx] > 0:
# If we're splitting the rightmost node of the tree, i.e. the
# rightmost node in the partition array, and if n_threads >= 2, one
# might have right_counts[-1] = 0 and right_offset[-1] = len(sample_indices)
# leading to evaluating
#
# &sample_indices[right_offset[-1]] = &samples_indices[n_samples_at_node]
# = &partition[n_samples_in_tree]
#
# which is an out-of-bounds read access that can cause a segmentation fault.
# When boundscheck=True, removing this check produces this exception:
#
# IndexError: Out of bounds on buffer access
#
memcpy(
&sample_indices[right_offset[thread_idx]],
&right_indices_buffer[offset_in_buffers[thread_idx]],
sizeof(unsigned int) * right_counts[thread_idx]
)
return (sample_indices[:right_child_position],
sample_indices[right_child_position:],
right_child_position)
def find_node_split(
Splitter self,
unsigned int n_samples,
hist_struct [:, ::1] histograms, # IN
const Y_DTYPE_C sum_gradients,
const Y_DTYPE_C sum_hessians,
const Y_DTYPE_C value,
const Y_DTYPE_C lower_bound=-INFINITY,
const Y_DTYPE_C upper_bound=INFINITY,
const unsigned int [:] allowed_features=None,
):
"""For each feature, find the best bin to split on at a given node.
Return the best split info among all features.
Parameters
----------
n_samples : int
The number of samples at the node.
histograms : ndarray of HISTOGRAM_DTYPE of \
shape (n_features, max_bins)
The histograms of the current node.
sum_gradients : float
The sum of the gradients for each sample at the node.
sum_hessians : float
The sum of the hessians for each sample at the node.
value : float
The bounded value of the current node. We directly pass the value
instead of re-computing it from sum_gradients and sum_hessians,
because we need to compute the loss and the gain based on the
*bounded* value: computing the value from
sum_gradients / sum_hessians would give the unbounded value, and
the interaction with min_gain_to_split would not be correct
anymore. Side note: we can't use the lower_bound / upper_bound
parameters either because these refer to the bounds of the
children, not the bounds of the current node.
lower_bound : float
Lower bound for the children values for respecting the monotonic
constraints.
upper_bound : float
Upper bound for the children values for respecting the monotonic
constraints.
allowed_features : None or ndarray, dtype=np.uint32
Indices of the features that are allowed by interaction constraints to be
split.
Returns
-------
best_split_info : SplitInfo
The info about the best possible split among all features.
"""
cdef:
int feature_idx
int split_info_idx
int best_split_info_idx
int n_allowed_features
split_info_struct split_info
split_info_struct * split_infos
const unsigned char [::1] has_missing_values = self.has_missing_values
const unsigned char [::1] is_categorical = self.is_categorical
const signed char [::1] monotonic_cst = self.monotonic_cst
int n_threads = self.n_threads
bint has_interaction_cst = False
has_interaction_cst = allowed_features is not None
if has_interaction_cst:
n_allowed_features = allowed_features.shape[0]
else:
n_allowed_features = self.n_features
with nogil:
split_infos = <split_info_struct *> malloc(
n_allowed_features * sizeof(split_info_struct))
# split_info_idx is index of split_infos of size n_features_allowed
# features_idx is the index of the feature column in X
for split_info_idx in prange(n_allowed_features, schedule='static',
num_threads=n_threads):
if has_interaction_cst:
feature_idx = allowed_features[split_info_idx]
else:
feature_idx = split_info_idx
split_infos[split_info_idx].feature_idx = feature_idx
# For each feature, find best bin to split on
# Start with a gain of -1 (if no better split is found, that
# means one of the constraints isn't respected
# (min_samples_leaf, etc) and the grower will later turn the
# node into a leaf.
split_infos[split_info_idx].gain = -1
split_infos[split_info_idx].is_categorical = is_categorical[feature_idx]
if is_categorical[feature_idx]:
self._find_best_bin_to_split_category(
feature_idx, has_missing_values[feature_idx],
histograms, n_samples, sum_gradients, sum_hessians,
value, monotonic_cst[feature_idx], lower_bound,
upper_bound, &split_infos[split_info_idx])
else:
# We will scan bins from left to right (in all cases), and
# if there are any missing values, we will also scan bins
# from right to left. This way, we can consider whichever
# case yields the best gain: either missing values go to
# the right (left to right scan) or to the left (right to
# left case). See algo 3 from the XGBoost paper
# https://arxiv.org/abs/1603.02754
# Note: for the categorical features above, this isn't
# needed since missing values are considered a native
# category.
self._find_best_bin_to_split_left_to_right(
feature_idx, has_missing_values[feature_idx],
histograms, n_samples, sum_gradients, sum_hessians,
value, monotonic_cst[feature_idx],
lower_bound, upper_bound, &split_infos[split_info_idx])
if has_missing_values[feature_idx]:
# We need to explore both directions to check whether
# sending the nans to the left child would lead to a higher
# gain
self._find_best_bin_to_split_right_to_left(
feature_idx, histograms, n_samples,
sum_gradients, sum_hessians,
value, monotonic_cst[feature_idx],
lower_bound, upper_bound, &split_infos[split_info_idx])
# then compute best possible split among all features
# split_info is set to the best of split_infos
best_split_info_idx = self._find_best_feature_to_split_helper(
split_infos, n_allowed_features
)
split_info = split_infos[best_split_info_idx]
out = SplitInfo(
split_info.gain,
split_info.feature_idx,
split_info.bin_idx,
split_info.missing_go_to_left,
split_info.sum_gradient_left,
split_info.sum_hessian_left,
split_info.sum_gradient_right,
split_info.sum_hessian_right,
split_info.n_samples_left,
split_info.n_samples_right,
split_info.value_left,
split_info.value_right,
split_info.is_categorical,
None, # left_cat_bitset will only be set if the split is categorical
)
# Only set bitset if the split is categorical
if split_info.is_categorical:
out.left_cat_bitset = np.asarray(split_info.left_cat_bitset, dtype=np.uint32)
free(split_infos)
return out
cdef unsigned int _find_best_feature_to_split_helper(
self,
split_info_struct * split_infos, # IN
int n_allowed_features,
) nogil:
"""Return the index of split_infos with the best feature split."""
cdef:
unsigned int split_info_idx
unsigned int best_split_info_idx = 0
for split_info_idx in range(1, n_allowed_features):
if (split_infos[split_info_idx].gain > split_infos[best_split_info_idx].gain):
best_split_info_idx = split_info_idx
return best_split_info_idx
cdef void _find_best_bin_to_split_left_to_right(
Splitter self,
unsigned int feature_idx,
unsigned char has_missing_values,
const hist_struct [:, ::1] histograms, # IN
unsigned int n_samples,
Y_DTYPE_C sum_gradients,
Y_DTYPE_C sum_hessians,
Y_DTYPE_C value,
signed char monotonic_cst,
Y_DTYPE_C lower_bound,
Y_DTYPE_C upper_bound,
split_info_struct * split_info) nogil: # OUT
"""Find best bin to split on for a given feature.
Splits that do not satisfy the splitting constraints
(min_gain_to_split, etc.) are discarded here.
We scan node from left to right. This version is called whether there
are missing values or not. If any, missing values are assigned to the
right node.
"""
cdef:
unsigned int bin_idx
unsigned int n_samples_left
unsigned int n_samples_right
unsigned int n_samples_ = n_samples
# We set the 'end' variable such that the last non-missing-values
# bin never goes to the left child (which would result in and
# empty right child), unless there are missing values, since these
# would go to the right child.
unsigned int end = \
self.n_bins_non_missing[feature_idx] - 1 + has_missing_values
Y_DTYPE_C sum_hessian_left
Y_DTYPE_C sum_hessian_right
Y_DTYPE_C sum_gradient_left
Y_DTYPE_C sum_gradient_right
Y_DTYPE_C loss_current_node
Y_DTYPE_C gain
unsigned char found_better_split = False
Y_DTYPE_C best_sum_hessian_left
Y_DTYPE_C best_sum_gradient_left
unsigned int best_bin_idx
unsigned int best_n_samples_left
Y_DTYPE_C best_gain = -1
sum_gradient_left, sum_hessian_left = 0., 0.
n_samples_left = 0
loss_current_node = _loss_from_value(value, sum_gradients)
for bin_idx in range(end):
n_samples_left += histograms[feature_idx, bin_idx].count
n_samples_right = n_samples_ - n_samples_left
if self.hessians_are_constant:
sum_hessian_left += histograms[feature_idx, bin_idx].count
else:
sum_hessian_left += \
histograms[feature_idx, bin_idx].sum_hessians
sum_hessian_right = sum_hessians - sum_hessian_left
sum_gradient_left += histograms[feature_idx, bin_idx].sum_gradients
sum_gradient_right = sum_gradients - sum_gradient_left
if n_samples_left < self.min_samples_leaf:
continue
if n_samples_right < self.min_samples_leaf:
# won't get any better
break
if sum_hessian_left < self.min_hessian_to_split:
continue
if sum_hessian_right < self.min_hessian_to_split:
# won't get any better (hessians are > 0 since loss is convex)
break
gain = _split_gain(sum_gradient_left, sum_hessian_left,
sum_gradient_right, sum_hessian_right,
loss_current_node,
monotonic_cst,
lower_bound,
upper_bound,
self.l2_regularization)
if gain > best_gain and gain > self.min_gain_to_split:
found_better_split = True
best_gain = gain
best_bin_idx = bin_idx
best_sum_gradient_left = sum_gradient_left
best_sum_hessian_left = sum_hessian_left
best_n_samples_left = n_samples_left
if found_better_split:
split_info.gain = best_gain
split_info.bin_idx = best_bin_idx
# we scan from left to right so missing values go to the right
split_info.missing_go_to_left = False
split_info.sum_gradient_left = best_sum_gradient_left
split_info.sum_gradient_right = sum_gradients - best_sum_gradient_left
split_info.sum_hessian_left = best_sum_hessian_left
split_info.sum_hessian_right = sum_hessians - best_sum_hessian_left
split_info.n_samples_left = best_n_samples_left
split_info.n_samples_right = n_samples - best_n_samples_left
# We recompute best values here but it's cheap
split_info.value_left = compute_node_value(
split_info.sum_gradient_left, split_info.sum_hessian_left,
lower_bound, upper_bound, self.l2_regularization)
split_info.value_right = compute_node_value(
split_info.sum_gradient_right, split_info.sum_hessian_right,
lower_bound, upper_bound, self.l2_regularization)
cdef void _find_best_bin_to_split_right_to_left(
self,
unsigned int feature_idx,
const hist_struct [:, ::1] histograms, # IN
unsigned int n_samples,
Y_DTYPE_C sum_gradients,
Y_DTYPE_C sum_hessians,
Y_DTYPE_C value,
signed char monotonic_cst,
Y_DTYPE_C lower_bound,
Y_DTYPE_C upper_bound,
split_info_struct * split_info) nogil: # OUT
"""Find best bin to split on for a given feature.
Splits that do not satisfy the splitting constraints
(min_gain_to_split, etc.) are discarded here.
We scan node from right to left. This version is only called when
there are missing values. Missing values are assigned to the left
child.
If no missing value are present in the data this method isn't called
since only calling _find_best_bin_to_split_left_to_right is enough.
"""
cdef:
unsigned int bin_idx
unsigned int n_samples_left
unsigned int n_samples_right
unsigned int n_samples_ = n_samples
Y_DTYPE_C sum_hessian_left
Y_DTYPE_C sum_hessian_right
Y_DTYPE_C sum_gradient_left
Y_DTYPE_C sum_gradient_right
Y_DTYPE_C loss_current_node
Y_DTYPE_C gain
unsigned int start = self.n_bins_non_missing[feature_idx] - 2
unsigned char found_better_split = False
Y_DTYPE_C best_sum_hessian_left
Y_DTYPE_C best_sum_gradient_left
unsigned int best_bin_idx
unsigned int best_n_samples_left
Y_DTYPE_C best_gain = split_info.gain # computed during previous scan
sum_gradient_right, sum_hessian_right = 0., 0.
n_samples_right = 0
loss_current_node = _loss_from_value(value, sum_gradients)
for bin_idx in range(start, -1, -1):
n_samples_right += histograms[feature_idx, bin_idx + 1].count
n_samples_left = n_samples_ - n_samples_right
if self.hessians_are_constant:
sum_hessian_right += histograms[feature_idx, bin_idx + 1].count
else:
sum_hessian_right += \
histograms[feature_idx, bin_idx + 1].sum_hessians
sum_hessian_left = sum_hessians - sum_hessian_right
sum_gradient_right += \
histograms[feature_idx, bin_idx + 1].sum_gradients
sum_gradient_left = sum_gradients - sum_gradient_right
if n_samples_right < self.min_samples_leaf:
continue
if n_samples_left < self.min_samples_leaf:
# won't get any better
break
if sum_hessian_right < self.min_hessian_to_split:
continue
if sum_hessian_left < self.min_hessian_to_split:
# won't get any better (hessians are > 0 since loss is convex)
break
gain = _split_gain(sum_gradient_left, sum_hessian_left,
sum_gradient_right, sum_hessian_right,
loss_current_node,
monotonic_cst,
lower_bound,
upper_bound,
self.l2_regularization)
if gain > best_gain and gain > self.min_gain_to_split:
found_better_split = True
best_gain = gain
best_bin_idx = bin_idx
best_sum_gradient_left = sum_gradient_left
best_sum_hessian_left = sum_hessian_left
best_n_samples_left = n_samples_left
if found_better_split:
split_info.gain = best_gain
split_info.bin_idx = best_bin_idx
# we scan from right to left so missing values go to the left
split_info.missing_go_to_left = True
split_info.sum_gradient_left = best_sum_gradient_left
split_info.sum_gradient_right = sum_gradients - best_sum_gradient_left
split_info.sum_hessian_left = best_sum_hessian_left
split_info.sum_hessian_right = sum_hessians - best_sum_hessian_left
split_info.n_samples_left = best_n_samples_left
split_info.n_samples_right = n_samples - best_n_samples_left
# We recompute best values here but it's cheap
split_info.value_left = compute_node_value(
split_info.sum_gradient_left, split_info.sum_hessian_left,
lower_bound, upper_bound, self.l2_regularization)
split_info.value_right = compute_node_value(
split_info.sum_gradient_right, split_info.sum_hessian_right,
lower_bound, upper_bound, self.l2_regularization)
cdef void _find_best_bin_to_split_category(
self,
unsigned int feature_idx,
unsigned char has_missing_values,
const hist_struct [:, ::1] histograms, # IN
unsigned int n_samples,
Y_DTYPE_C sum_gradients,
Y_DTYPE_C sum_hessians,
Y_DTYPE_C value,
char monotonic_cst,
Y_DTYPE_C lower_bound,
Y_DTYPE_C upper_bound,
split_info_struct * split_info) nogil: # OUT
"""Find best split for categorical features.
Categories are first sorted according to their variance, and then
a scan is performed as if categories were ordered quantities.
Ref: "On Grouping for Maximum Homogeneity", Walter D. Fisher
"""
cdef:
unsigned int bin_idx
unsigned int n_bins_non_missing = self.n_bins_non_missing[feature_idx]
unsigned int missing_values_bin_idx = self.missing_values_bin_idx
categorical_info * cat_infos
unsigned int sorted_cat_idx
unsigned int n_used_bins = 0
int [2] scan_direction
int direction = 0
int best_direction = 0
unsigned int middle
unsigned int i
const hist_struct[::1] feature_hist = histograms[feature_idx, :]
Y_DTYPE_C sum_gradients_bin
Y_DTYPE_C sum_hessians_bin
Y_DTYPE_C loss_current_node
Y_DTYPE_C sum_gradient_left, sum_hessian_left
Y_DTYPE_C sum_gradient_right, sum_hessian_right
unsigned int n_samples_left, n_samples_right
Y_DTYPE_C gain
Y_DTYPE_C best_gain = -1.0
unsigned char found_better_split = False
Y_DTYPE_C best_sum_hessian_left
Y_DTYPE_C best_sum_gradient_left
unsigned int best_n_samples_left
unsigned int best_cat_infos_thresh
# Reduces the effect of noises in categorical features,
# especially for categories with few data. Called cat_smooth in
# LightGBM. TODO: Make this user adjustable?
Y_DTYPE_C MIN_CAT_SUPPORT = 10.
# this is equal to 1 for losses where hessians are constant
Y_DTYPE_C support_factor = n_samples / sum_hessians
# Details on the split finding:
# We first order categories by their sum_gradients / sum_hessians
# values, and we exclude categories that don't respect MIN_CAT_SUPPORT
# from this sorted array. Missing values are treated just like any
# other category. The low-support categories will always be mapped to
# the right child. We scan the sorted categories array from left to
# right and from right to left, and we stop at the middle.
# Considering ordered categories A B C D, with E being a low-support
# category: A B C D
# ^
# midpoint
# The scans will consider the following split-points:
# * left to right:
# A - B C D E
# A B - C D E
# * right to left:
# D - A B C E
# C D - A B E
# Note that since we stop at the middle and since low-support
# categories (E) are always mapped to the right, the following splits
# aren't considered:
# A E - B C D
# D E - A B C
# Basically, we're forcing E to always be mapped to the child that has
# *at least half of the categories* (and this child is always the right
# child, by convention).
# Also note that if we scanned in only one direction (e.g. left to
# right), we would only consider the following splits:
# A - B C D E
# A B - C D E
# A B C - D E
# and thus we would be missing on D - A B C E and on C D - A B E
cat_infos = <categorical_info *> malloc(
(n_bins_non_missing + has_missing_values) * sizeof(categorical_info))
# fill cat_infos while filtering out categories based on MIN_CAT_SUPPORT
for bin_idx in range(n_bins_non_missing):
if self.hessians_are_constant:
sum_hessians_bin = feature_hist[bin_idx].count
else:
sum_hessians_bin = feature_hist[bin_idx].sum_hessians
if sum_hessians_bin * support_factor >= MIN_CAT_SUPPORT:
cat_infos[n_used_bins].bin_idx = bin_idx
sum_gradients_bin = feature_hist[bin_idx].sum_gradients
cat_infos[n_used_bins].value = (
sum_gradients_bin / (sum_hessians_bin + MIN_CAT_SUPPORT)
)
n_used_bins += 1
# Also add missing values bin so that nans are considered as a category
if has_missing_values:
if self.hessians_are_constant:
sum_hessians_bin = feature_hist[missing_values_bin_idx].count
else:
sum_hessians_bin = feature_hist[missing_values_bin_idx].sum_hessians
if sum_hessians_bin * support_factor >= MIN_CAT_SUPPORT:
cat_infos[n_used_bins].bin_idx = missing_values_bin_idx
sum_gradients_bin = (
feature_hist[missing_values_bin_idx].sum_gradients
)
cat_infos[n_used_bins].value = (
sum_gradients_bin / (sum_hessians_bin + MIN_CAT_SUPPORT)
)
n_used_bins += 1
# not enough categories to form a split
if n_used_bins <= 1:
free(cat_infos)
return
qsort(cat_infos, n_used_bins, sizeof(categorical_info),
compare_cat_infos)
loss_current_node = _loss_from_value(value, sum_gradients)
scan_direction[0], scan_direction[1] = 1, -1
for direction in scan_direction:
if direction == 1:
middle = (n_used_bins + 1) // 2
else:
middle = (n_used_bins + 1) // 2 - 1
# The categories we'll consider will go to the left child
sum_gradient_left, sum_hessian_left = 0., 0.
n_samples_left = 0
for i in range(middle):
sorted_cat_idx = i if direction == 1 else n_used_bins - 1 - i
bin_idx = cat_infos[sorted_cat_idx].bin_idx;
n_samples_left += feature_hist[bin_idx].count
n_samples_right = n_samples - n_samples_left
if self.hessians_are_constant:
sum_hessian_left += feature_hist[bin_idx].count
else:
sum_hessian_left += feature_hist[bin_idx].sum_hessians
sum_hessian_right = sum_hessians - sum_hessian_left
sum_gradient_left += feature_hist[bin_idx].sum_gradients
sum_gradient_right = sum_gradients - sum_gradient_left
if (n_samples_left < self.min_samples_leaf or
sum_hessian_left < self.min_hessian_to_split):
continue
if (n_samples_right < self.min_samples_leaf or
sum_hessian_right < self.min_hessian_to_split):
break
gain = _split_gain(sum_gradient_left, sum_hessian_left,
sum_gradient_right, sum_hessian_right,
loss_current_node, monotonic_cst,
lower_bound, upper_bound,
self.l2_regularization)
if gain > best_gain and gain > self.min_gain_to_split:
found_better_split = True
best_gain = gain
best_cat_infos_thresh = sorted_cat_idx
best_sum_gradient_left = sum_gradient_left
best_sum_hessian_left = sum_hessian_left
best_n_samples_left = n_samples_left
best_direction = direction
if found_better_split:
split_info.gain = best_gain
# split_info.bin_idx is unused for categorical splits: left_cat_bitset
# is used instead and set below
split_info.bin_idx = 0
split_info.sum_gradient_left = best_sum_gradient_left
split_info.sum_gradient_right = sum_gradients - best_sum_gradient_left
split_info.sum_hessian_left = best_sum_hessian_left
split_info.sum_hessian_right = sum_hessians - best_sum_hessian_left
split_info.n_samples_left = best_n_samples_left
split_info.n_samples_right = n_samples - best_n_samples_left
# We recompute best values here but it's cheap
split_info.value_left = compute_node_value(
split_info.sum_gradient_left, split_info.sum_hessian_left,
lower_bound, upper_bound, self.l2_regularization)
split_info.value_right = compute_node_value(
split_info.sum_gradient_right, split_info.sum_hessian_right,
lower_bound, upper_bound, self.l2_regularization)
# create bitset with values from best_cat_infos_thresh
init_bitset(split_info.left_cat_bitset)
if best_direction == 1:
for sorted_cat_idx in range(best_cat_infos_thresh + 1):
bin_idx = cat_infos[sorted_cat_idx].bin_idx
set_bitset(split_info.left_cat_bitset, bin_idx)
else:
for sorted_cat_idx in range(n_used_bins - 1, best_cat_infos_thresh - 1, -1):
bin_idx = cat_infos[sorted_cat_idx].bin_idx
set_bitset(split_info.left_cat_bitset, bin_idx)
if has_missing_values:
split_info.missing_go_to_left = in_bitset(
split_info.left_cat_bitset, missing_values_bin_idx)
free(cat_infos)
cdef int compare_cat_infos(const void * a, const void * b) nogil:
return -1 if (<categorical_info *>a).value < (<categorical_info *>b).value else 1
cdef inline Y_DTYPE_C _split_gain(
Y_DTYPE_C sum_gradient_left,
Y_DTYPE_C sum_hessian_left,
Y_DTYPE_C sum_gradient_right,
Y_DTYPE_C sum_hessian_right,
Y_DTYPE_C loss_current_node,
signed char monotonic_cst,
Y_DTYPE_C lower_bound,
Y_DTYPE_C upper_bound,
Y_DTYPE_C l2_regularization) nogil:
"""Loss reduction
Compute the reduction in loss after taking a split, compared to keeping
the node a leaf of the tree.
See Equation 7 of:
:arxiv:`T. Chen, C. Guestrin, (2016) XGBoost: A Scalable Tree Boosting System,
<1603.02754>.`
"""
cdef:
Y_DTYPE_C gain
Y_DTYPE_C value_left
Y_DTYPE_C value_right
# Compute values of potential left and right children
value_left = compute_node_value(sum_gradient_left, sum_hessian_left,
lower_bound, upper_bound,
l2_regularization)
value_right = compute_node_value(sum_gradient_right, sum_hessian_right,
lower_bound, upper_bound,
l2_regularization)
if ((monotonic_cst == MonotonicConstraint.POS and value_left > value_right) or
(monotonic_cst == MonotonicConstraint.NEG and value_left < value_right)):
# don't consider this split since it does not respect the monotonic
# constraints. Note that these comparisons need to be done on values
# that have already been clipped to take the monotonic constraints into
# account (if any).
return -1
gain = loss_current_node
gain -= _loss_from_value(value_left, sum_gradient_left)
gain -= _loss_from_value(value_right, sum_gradient_right)
# Note that for the gain to be correct (and for min_gain_to_split to work
# as expected), we need all values to be bounded (current node, left child
# and right child).
return gain
cdef inline Y_DTYPE_C _loss_from_value(
Y_DTYPE_C value,
Y_DTYPE_C sum_gradient) nogil:
"""Return loss of a node from its (bounded) value
See Equation 6 of:
:arxiv:`T. Chen, C. Guestrin, (2016) XGBoost: A Scalable Tree Boosting System,
<1603.02754>.`
"""
return sum_gradient * value
cdef inline unsigned char sample_goes_left(
unsigned char missing_go_to_left,
unsigned char missing_values_bin_idx,
X_BINNED_DTYPE_C split_bin_idx,
X_BINNED_DTYPE_C bin_value,
unsigned char is_categorical,
BITSET_DTYPE_C left_cat_bitset) nogil:
"""Helper to decide whether sample should go to left or right child."""
if is_categorical:
# note: if any, missing values are encoded in left_cat_bitset
return in_bitset(left_cat_bitset, bin_value)
else:
return (
(
missing_go_to_left and
bin_value == missing_values_bin_idx
)
or (
bin_value <= split_bin_idx
))
cpdef inline Y_DTYPE_C compute_node_value(
Y_DTYPE_C sum_gradient,
Y_DTYPE_C sum_hessian,
Y_DTYPE_C lower_bound,
Y_DTYPE_C upper_bound,
Y_DTYPE_C l2_regularization) nogil:
"""Compute a node's value.
The value is capped in the [lower_bound, upper_bound] interval to respect
monotonic constraints. Shrinkage is ignored.
See Equation 5 of:
:arxiv:`T. Chen, C. Guestrin, (2016) XGBoost: A Scalable Tree Boosting System,
<1603.02754>.`
"""
cdef:
Y_DTYPE_C value
value = -sum_gradient / (sum_hessian + l2_regularization + 1e-15)
if value < lower_bound:
value = lower_bound
elif value > upper_bound:
value = upper_bound
return value
|