File: test_monotonic_contraints.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (425 lines) | stat: -rw-r--r-- 15,961 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import re
import numpy as np
import pytest

from sklearn.ensemble._hist_gradient_boosting.grower import TreeGrower
from sklearn.ensemble._hist_gradient_boosting.common import G_H_DTYPE
from sklearn.ensemble._hist_gradient_boosting.common import X_BINNED_DTYPE
from sklearn.ensemble._hist_gradient_boosting.common import MonotonicConstraint
from sklearn.ensemble._hist_gradient_boosting.splitting import (
    Splitter,
    compute_node_value,
)
from sklearn.ensemble._hist_gradient_boosting.histogram import HistogramBuilder
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.utils._openmp_helpers import _openmp_effective_n_threads

n_threads = _openmp_effective_n_threads()


def is_increasing(a):
    return (np.diff(a) >= 0.0).all()


def is_decreasing(a):
    return (np.diff(a) <= 0.0).all()


def assert_leaves_values_monotonic(predictor, monotonic_cst):
    # make sure leaves values (from left to right) are either all increasing
    # or all decreasing (or neither) depending on the monotonic constraint.
    nodes = predictor.nodes

    def get_leaves_values():
        """get leaves values from left to right"""
        values = []

        def depth_first_collect_leaf_values(node_idx):
            node = nodes[node_idx]
            if node["is_leaf"]:
                values.append(node["value"])
                return
            depth_first_collect_leaf_values(node["left"])
            depth_first_collect_leaf_values(node["right"])

        depth_first_collect_leaf_values(0)  # start at root (0)
        return values

    values = get_leaves_values()

    if monotonic_cst == MonotonicConstraint.NO_CST:
        # some increasing, some decreasing
        assert not is_increasing(values) and not is_decreasing(values)
    elif monotonic_cst == MonotonicConstraint.POS:
        # all increasing
        assert is_increasing(values)
    else:  # NEG
        # all decreasing
        assert is_decreasing(values)


def assert_children_values_monotonic(predictor, monotonic_cst):
    # Make sure siblings values respect the monotonic constraints. Left should
    # be lower (resp greater) than right child if constraint is POS (resp.
    # NEG).
    # Note that this property alone isn't enough to ensure full monotonicity,
    # since we also need to guanrantee that all the descendents of the left
    # child won't be greater (resp. lower) than the right child, or its
    # descendents. That's why we need to bound the predicted values (this is
    # tested in assert_children_values_bounded)
    nodes = predictor.nodes
    left_lower = []
    left_greater = []
    for node in nodes:
        if node["is_leaf"]:
            continue

        left_idx = node["left"]
        right_idx = node["right"]

        if nodes[left_idx]["value"] < nodes[right_idx]["value"]:
            left_lower.append(node)
        elif nodes[left_idx]["value"] > nodes[right_idx]["value"]:
            left_greater.append(node)

    if monotonic_cst == MonotonicConstraint.NO_CST:
        assert left_lower and left_greater
    elif monotonic_cst == MonotonicConstraint.POS:
        assert left_lower and not left_greater
    else:  # NEG
        assert not left_lower and left_greater


def assert_children_values_bounded(grower, monotonic_cst):
    # Make sure that the values of the children of a node are bounded by the
    # middle value between that node and its sibling (if there is a monotonic
    # constraint).
    # As a bonus, we also check that the siblings values are properly ordered
    # which is slightly redundant with assert_children_values_monotonic (but
    # this check is done on the grower nodes whereas
    # assert_children_values_monotonic is done on the predictor nodes)

    if monotonic_cst == MonotonicConstraint.NO_CST:
        return

    def recursively_check_children_node_values(node, right_sibling=None):
        if node.is_leaf:
            return
        if right_sibling is not None:
            middle = (node.value + right_sibling.value) / 2
            if monotonic_cst == MonotonicConstraint.POS:
                assert node.left_child.value <= node.right_child.value <= middle
                if not right_sibling.is_leaf:
                    assert (
                        middle
                        <= right_sibling.left_child.value
                        <= right_sibling.right_child.value
                    )
            else:  # NEG
                assert node.left_child.value >= node.right_child.value >= middle
                if not right_sibling.is_leaf:
                    assert (
                        middle
                        >= right_sibling.left_child.value
                        >= right_sibling.right_child.value
                    )

        recursively_check_children_node_values(
            node.left_child, right_sibling=node.right_child
        )
        recursively_check_children_node_values(node.right_child)

    recursively_check_children_node_values(grower.root)


@pytest.mark.parametrize("seed", range(3))
@pytest.mark.parametrize(
    "monotonic_cst",
    (
        MonotonicConstraint.NO_CST,
        MonotonicConstraint.POS,
        MonotonicConstraint.NEG,
    ),
)
def test_nodes_values(monotonic_cst, seed):
    # Build a single tree with only one feature, and make sure the nodes
    # values respect the monotonic constraints.

    # Considering the following tree with a monotonic POS constraint, we
    # should have:
    #
    #       root
    #      /    \
    #     5     10    # middle = 7.5
    #    / \   / \
    #   a  b  c  d
    #
    # a <= b and c <= d  (assert_children_values_monotonic)
    # a, b <= middle <= c, d (assert_children_values_bounded)
    # a <= b <= c <= d (assert_leaves_values_monotonic)
    #
    # The last one is a consequence of the others, but can't hurt to check

    rng = np.random.RandomState(seed)
    n_samples = 1000
    n_features = 1
    X_binned = rng.randint(0, 255, size=(n_samples, n_features), dtype=np.uint8)
    X_binned = np.asfortranarray(X_binned)

    gradients = rng.normal(size=n_samples).astype(G_H_DTYPE)
    hessians = np.ones(shape=1, dtype=G_H_DTYPE)

    grower = TreeGrower(
        X_binned, gradients, hessians, monotonic_cst=[monotonic_cst], shrinkage=0.1
    )
    grower.grow()

    # grow() will shrink the leaves values at the very end. For our comparison
    # tests, we need to revert the shrinkage of the leaves, else we would
    # compare the value of a leaf (shrunk) with a node (not shrunk) and the
    # test would not be correct.
    for leave in grower.finalized_leaves:
        leave.value /= grower.shrinkage

    # We pass undefined binning_thresholds because we won't use predict anyway
    predictor = grower.make_predictor(
        binning_thresholds=np.zeros((X_binned.shape[1], X_binned.max() + 1))
    )

    # The consistency of the bounds can only be checked on the tree grower
    # as the node bounds are not copied into the predictor tree. The
    # consistency checks on the values of node children and leaves can be
    # done either on the grower tree or on the predictor tree. We only
    # do those checks on the predictor tree as the latter is derived from
    # the former.
    assert_children_values_monotonic(predictor, monotonic_cst)
    assert_children_values_bounded(grower, monotonic_cst)
    assert_leaves_values_monotonic(predictor, monotonic_cst)


@pytest.mark.parametrize("use_feature_names", (True, False))
def test_predictions(global_random_seed, use_feature_names):
    # Train a model with a POS constraint on the first feature and a NEG
    # constraint on the second feature, and make sure the constraints are
    # respected by checking the predictions.
    # test adapted from lightgbm's test_monotone_constraint(), itself inspired
    # by https://xgboost.readthedocs.io/en/latest/tutorials/monotonic.html

    rng = np.random.RandomState(global_random_seed)

    n_samples = 1000
    f_0 = rng.rand(n_samples)  # positive correlation with y
    f_1 = rng.rand(n_samples)  # negative correslation with y
    X = np.c_[f_0, f_1]
    if use_feature_names:
        pd = pytest.importorskip("pandas")
        X = pd.DataFrame(X, columns=["f_0", "f_1"])

    noise = rng.normal(loc=0.0, scale=0.01, size=n_samples)
    y = 5 * f_0 + np.sin(10 * np.pi * f_0) - 5 * f_1 - np.cos(10 * np.pi * f_1) + noise

    if use_feature_names:
        monotonic_cst = {"f_0": +1, "f_1": -1}
    else:
        monotonic_cst = [+1, -1]

    gbdt = HistGradientBoostingRegressor(monotonic_cst=monotonic_cst)
    gbdt.fit(X, y)

    linspace = np.linspace(0, 1, 100)
    sin = np.sin(linspace)
    constant = np.full_like(linspace, fill_value=0.5)

    # We now assert the predictions properly respect the constraints, on each
    # feature. When testing for a feature we need to set the other one to a
    # constant, because the monotonic constraints are only a "all else being
    # equal" type of constraints:
    # a constraint on the first feature only means that
    # x0 < x0' => f(x0, x1) < f(x0', x1)
    # while x1 stays constant.
    # The constraint does not guanrantee that
    # x0 < x0' => f(x0, x1) < f(x0', x1')

    # First feature (POS)
    # assert pred is all increasing when f_0 is all increasing
    X = np.c_[linspace, constant]
    pred = gbdt.predict(X)
    assert is_increasing(pred)
    # assert pred actually follows the variations of f_0
    X = np.c_[sin, constant]
    pred = gbdt.predict(X)
    assert np.all((np.diff(pred) >= 0) == (np.diff(sin) >= 0))

    # Second feature (NEG)
    # assert pred is all decreasing when f_1 is all increasing
    X = np.c_[constant, linspace]
    pred = gbdt.predict(X)
    assert is_decreasing(pred)
    # assert pred actually follows the inverse variations of f_1
    X = np.c_[constant, sin]
    pred = gbdt.predict(X)
    assert ((np.diff(pred) <= 0) == (np.diff(sin) >= 0)).all()


def test_input_error():
    X = [[1, 2], [2, 3], [3, 4]]
    y = [0, 1, 2]

    gbdt = HistGradientBoostingRegressor(monotonic_cst=[1, 0, -1])
    with pytest.raises(
        ValueError, match=re.escape("monotonic_cst has shape (3,) but the input data")
    ):
        gbdt.fit(X, y)

    for monotonic_cst in ([1, 3], [1, -3], [0.3, -0.7]):
        gbdt = HistGradientBoostingRegressor(monotonic_cst=monotonic_cst)
        expected_msg = re.escape(
            "must be an array-like of -1, 0 or 1. Observed values:"
        )
        with pytest.raises(ValueError, match=expected_msg):
            gbdt.fit(X, y)

    gbdt = HistGradientBoostingClassifier(monotonic_cst=[0, 1])
    with pytest.raises(
        ValueError,
        match="monotonic constraints are not supported for multiclass classification",
    ):
        gbdt.fit(X, y)


def test_input_error_related_to_feature_names():
    pd = pytest.importorskip("pandas")
    X = pd.DataFrame({"a": [0, 1, 2], "b": [0, 1, 2]})
    y = np.array([0, 1, 0])

    monotonic_cst = {"d": 1, "a": 1, "c": -1}
    gbdt = HistGradientBoostingRegressor(monotonic_cst=monotonic_cst)
    expected_msg = re.escape(
        "monotonic_cst contains 2 unexpected feature names: ['c', 'd']."
    )
    with pytest.raises(ValueError, match=expected_msg):
        gbdt.fit(X, y)

    monotonic_cst = {k: 1 for k in "abcdefghijklmnopqrstuvwxyz"}
    gbdt = HistGradientBoostingRegressor(monotonic_cst=monotonic_cst)
    expected_msg = re.escape(
        "monotonic_cst contains 24 unexpected feature names: "
        "['c', 'd', 'e', 'f', 'g', '...']."
    )
    with pytest.raises(ValueError, match=expected_msg):
        gbdt.fit(X, y)

    monotonic_cst = {"a": 1}
    gbdt = HistGradientBoostingRegressor(monotonic_cst=monotonic_cst)
    expected_msg = re.escape(
        "HistGradientBoostingRegressor was not fitted on data with feature "
        "names. Pass monotonic_cst as an integer array instead."
    )
    with pytest.raises(ValueError, match=expected_msg):
        gbdt.fit(X.values, y)

    monotonic_cst = {"b": -1, "a": "+"}
    gbdt = HistGradientBoostingRegressor(monotonic_cst=monotonic_cst)
    expected_msg = re.escape("monotonic_cst['a'] must be either -1, 0 or 1. Got '+'.")
    with pytest.raises(ValueError, match=expected_msg):
        gbdt.fit(X, y)


def test_bounded_value_min_gain_to_split():
    # The purpose of this test is to show that when computing the gain at a
    # given split, the value of the current node should be properly bounded to
    # respect the monotonic constraints, because it strongly interacts with
    # min_gain_to_split. We build a simple example where gradients are [1, 1,
    # 100, 1, 1] (hessians are all ones). The best split happens on the 3rd
    # bin, and depending on whether the value of the node is bounded or not,
    # the min_gain_to_split constraint is or isn't satisfied.
    l2_regularization = 0
    min_hessian_to_split = 0
    min_samples_leaf = 1
    n_bins = n_samples = 5
    X_binned = np.arange(n_samples).reshape(-1, 1).astype(X_BINNED_DTYPE)
    sample_indices = np.arange(n_samples, dtype=np.uint32)
    all_hessians = np.ones(n_samples, dtype=G_H_DTYPE)
    all_gradients = np.array([1, 1, 100, 1, 1], dtype=G_H_DTYPE)
    sum_gradients = all_gradients.sum()
    sum_hessians = all_hessians.sum()
    hessians_are_constant = False

    builder = HistogramBuilder(
        X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads
    )
    n_bins_non_missing = np.array([n_bins - 1] * X_binned.shape[1], dtype=np.uint32)
    has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8)
    monotonic_cst = np.array(
        [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8
    )
    is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8)
    missing_values_bin_idx = n_bins - 1
    children_lower_bound, children_upper_bound = -np.inf, np.inf

    min_gain_to_split = 2000
    splitter = Splitter(
        X_binned,
        n_bins_non_missing,
        missing_values_bin_idx,
        has_missing_values,
        is_categorical,
        monotonic_cst,
        l2_regularization,
        min_hessian_to_split,
        min_samples_leaf,
        min_gain_to_split,
        hessians_are_constant,
    )

    histograms = builder.compute_histograms_brute(sample_indices)

    # Since the gradient array is [1, 1, 100, 1, 1]
    # the max possible gain happens on the 3rd bin (or equivalently in the 2nd)
    # and is equal to about 1307, which less than min_gain_to_split = 2000, so
    # the node is considered unsplittable (gain = -1)
    current_lower_bound, current_upper_bound = -np.inf, np.inf
    value = compute_node_value(
        sum_gradients,
        sum_hessians,
        current_lower_bound,
        current_upper_bound,
        l2_regularization,
    )
    # the unbounded value is equal to -sum_gradients / sum_hessians
    assert value == pytest.approx(-104 / 5)
    split_info = splitter.find_node_split(
        n_samples,
        histograms,
        sum_gradients,
        sum_hessians,
        value,
        lower_bound=children_lower_bound,
        upper_bound=children_upper_bound,
    )
    assert split_info.gain == -1  # min_gain_to_split not respected

    # here again the max possible gain is on the 3rd bin but we now cap the
    # value of the node into [-10, inf].
    # This means the gain is now about 2430 which is more than the
    # min_gain_to_split constraint.
    current_lower_bound, current_upper_bound = -10, np.inf
    value = compute_node_value(
        sum_gradients,
        sum_hessians,
        current_lower_bound,
        current_upper_bound,
        l2_regularization,
    )
    assert value == -10
    split_info = splitter.find_node_split(
        n_samples,
        histograms,
        sum_gradients,
        sum_hessians,
        value,
        lower_bound=children_lower_bound,
        upper_bound=children_upper_bound,
    )
    assert split_info.gain > min_gain_to_split