1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
|
"""
Testing for the forest module (sklearn.ensemble.forest).
"""
# Authors: Gilles Louppe,
# Brian Holt,
# Andreas Mueller,
# Arnaud Joly
# License: BSD 3 clause
import pickle
import math
from collections import defaultdict
import itertools
from functools import partial
from itertools import combinations
from itertools import product
from typing import Dict, Any
import numpy as np
from scipy.sparse import csr_matrix
from scipy.sparse import csc_matrix
from scipy.sparse import coo_matrix
from scipy.special import comb
import joblib
import pytest
import sklearn
from sklearn.dummy import DummyRegressor
from sklearn.metrics import mean_poisson_deviance
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import _convert_container
from sklearn.utils._testing import ignore_warnings
from sklearn.utils._testing import skip_if_no_parallel
from sklearn.exceptions import NotFittedError
from sklearn import datasets
from sklearn.decomposition import TruncatedSVD
from sklearn.datasets import make_classification
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomTreesEmbedding
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.svm import LinearSVC
from sklearn.utils.parallel import Parallel
from sklearn.utils.validation import check_random_state
from sklearn.metrics import mean_squared_error
from sklearn.tree._classes import SPARSE_SPLITTERS
# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
T = [[-1, -1], [2, 2], [3, 2]]
true_result = [-1, 1, 1]
# Larger classification sample used for testing feature importances
X_large, y_large = datasets.make_classification(
n_samples=500,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
shuffle=False,
random_state=0,
)
# also load the iris dataset
# and randomly permute it
iris = datasets.load_iris()
rng = check_random_state(0)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
# Make regression dataset
X_reg, y_reg = datasets.make_regression(n_samples=500, n_features=10, random_state=1)
# also make a hastie_10_2 dataset
hastie_X, hastie_y = datasets.make_hastie_10_2(n_samples=20, random_state=1)
hastie_X = hastie_X.astype(np.float32)
# Get the default backend in joblib to test parallelism and interaction with
# different backends
DEFAULT_JOBLIB_BACKEND = joblib.parallel.get_active_backend()[0].__class__
FOREST_CLASSIFIERS = {
"ExtraTreesClassifier": ExtraTreesClassifier,
"RandomForestClassifier": RandomForestClassifier,
}
FOREST_REGRESSORS = {
"ExtraTreesRegressor": ExtraTreesRegressor,
"RandomForestRegressor": RandomForestRegressor,
}
FOREST_TRANSFORMERS = {
"RandomTreesEmbedding": RandomTreesEmbedding,
}
FOREST_ESTIMATORS: Dict[str, Any] = dict()
FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS)
FOREST_ESTIMATORS.update(FOREST_REGRESSORS)
FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS)
FOREST_CLASSIFIERS_REGRESSORS: Dict[str, Any] = FOREST_CLASSIFIERS.copy()
FOREST_CLASSIFIERS_REGRESSORS.update(FOREST_REGRESSORS)
def check_classification_toy(name):
"""Check classification on a toy dataset."""
ForestClassifier = FOREST_CLASSIFIERS[name]
clf = ForestClassifier(n_estimators=10, random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert 10 == len(clf)
clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert 10 == len(clf)
# also test apply
leaf_indices = clf.apply(X)
assert leaf_indices.shape == (len(X), clf.n_estimators)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
def test_classification_toy(name):
check_classification_toy(name)
def check_iris_criterion(name, criterion):
# Check consistency on dataset iris.
ForestClassifier = FOREST_CLASSIFIERS[name]
clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1)
clf.fit(iris.data, iris.target)
score = clf.score(iris.data, iris.target)
assert score > 0.9, "Failed with criterion %s and score = %f" % (criterion, score)
clf = ForestClassifier(
n_estimators=10, criterion=criterion, max_features=2, random_state=1
)
clf.fit(iris.data, iris.target)
score = clf.score(iris.data, iris.target)
assert score > 0.5, "Failed with criterion %s and score = %f" % (criterion, score)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
@pytest.mark.parametrize("criterion", ("gini", "log_loss"))
def test_iris(name, criterion):
check_iris_criterion(name, criterion)
def check_regression_criterion(name, criterion):
# Check consistency on regression dataset.
ForestRegressor = FOREST_REGRESSORS[name]
reg = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1)
reg.fit(X_reg, y_reg)
score = reg.score(X_reg, y_reg)
assert (
score > 0.93
), "Failed with max_features=None, criterion %s and score = %f" % (
criterion,
score,
)
reg = ForestRegressor(
n_estimators=5, criterion=criterion, max_features=6, random_state=1
)
reg.fit(X_reg, y_reg)
score = reg.score(X_reg, y_reg)
assert score > 0.92, "Failed with max_features=6, criterion %s and score = %f" % (
criterion,
score,
)
@pytest.mark.parametrize("name", FOREST_REGRESSORS)
@pytest.mark.parametrize(
"criterion", ("squared_error", "absolute_error", "friedman_mse")
)
def test_regression(name, criterion):
check_regression_criterion(name, criterion)
def test_poisson_vs_mse():
"""Test that random forest with poisson criterion performs better than
mse for a poisson target.
There is a similar test for DecisionTreeRegressor.
"""
rng = np.random.RandomState(42)
n_train, n_test, n_features = 500, 500, 10
X = datasets.make_low_rank_matrix(
n_samples=n_train + n_test, n_features=n_features, random_state=rng
)
# We create a log-linear Poisson model and downscale coef as it will get
# exponentiated.
coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0)
y = rng.poisson(lam=np.exp(X @ coef))
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=n_test, random_state=rng
)
# We prevent some overfitting by setting min_samples_split=10.
forest_poi = RandomForestRegressor(
criterion="poisson", min_samples_leaf=10, max_features="sqrt", random_state=rng
)
forest_mse = RandomForestRegressor(
criterion="squared_error",
min_samples_leaf=10,
max_features="sqrt",
random_state=rng,
)
forest_poi.fit(X_train, y_train)
forest_mse.fit(X_train, y_train)
dummy = DummyRegressor(strategy="mean").fit(X_train, y_train)
for X, y, data_name in [(X_train, y_train, "train"), (X_test, y_test, "test")]:
metric_poi = mean_poisson_deviance(y, forest_poi.predict(X))
# squared_error forest might produce non-positive predictions => clip
# If y = 0 for those, the poisson deviance gets too good.
# If we drew more samples, we would eventually get y > 0 and the
# poisson deviance would explode, i.e. be undefined. Therefore, we do
# not clip to a tiny value like 1e-15, but to 1e-6. This acts like a
# small penalty to the non-positive predictions.
metric_mse = mean_poisson_deviance(
y, np.clip(forest_mse.predict(X), 1e-6, None)
)
metric_dummy = mean_poisson_deviance(y, dummy.predict(X))
# As squared_error might correctly predict 0 in train set, its train
# score can be better than Poisson. This is no longer the case for the
# test set. But keep the above comment for clipping in mind.
if data_name == "test":
assert metric_poi < metric_mse
assert metric_poi < 0.8 * metric_dummy
@pytest.mark.parametrize("criterion", ("poisson", "squared_error"))
def test_balance_property_random_forest(criterion):
""" "Test that sum(y_pred)==sum(y_true) on the training set."""
rng = np.random.RandomState(42)
n_train, n_test, n_features = 500, 500, 10
X = datasets.make_low_rank_matrix(
n_samples=n_train + n_test, n_features=n_features, random_state=rng
)
coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0)
y = rng.poisson(lam=np.exp(X @ coef))
reg = RandomForestRegressor(
criterion=criterion, n_estimators=10, bootstrap=False, random_state=rng
)
reg.fit(X, y)
assert np.sum(reg.predict(X)) == pytest.approx(np.sum(y))
def check_regressor_attributes(name):
# Regression models should not have a classes_ attribute.
r = FOREST_REGRESSORS[name](random_state=0)
assert not hasattr(r, "classes_")
assert not hasattr(r, "n_classes_")
r.fit([[1, 2, 3], [4, 5, 6]], [1, 2])
assert not hasattr(r, "classes_")
assert not hasattr(r, "n_classes_")
@pytest.mark.parametrize("name", FOREST_REGRESSORS)
def test_regressor_attributes(name):
check_regressor_attributes(name)
def check_probability(name):
# Predict probabilities.
ForestClassifier = FOREST_CLASSIFIERS[name]
with np.errstate(divide="ignore"):
clf = ForestClassifier(
n_estimators=10, random_state=1, max_features=1, max_depth=1
)
clf.fit(iris.data, iris.target)
assert_array_almost_equal(
np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])
)
assert_array_almost_equal(
clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))
)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
def test_probability(name):
check_probability(name)
def check_importances(name, criterion, dtype, tolerance):
# cast as dype
X = X_large.astype(dtype, copy=False)
y = y_large.astype(dtype, copy=False)
ForestEstimator = FOREST_ESTIMATORS[name]
est = ForestEstimator(n_estimators=10, criterion=criterion, random_state=0)
est.fit(X, y)
importances = est.feature_importances_
# The forest estimator can detect that only the first 3 features of the
# dataset are informative:
n_important = np.sum(importances > 0.1)
assert importances.shape[0] == 10
assert n_important == 3
assert np.all(importances[:3] > 0.1)
# Check with parallel
importances = est.feature_importances_
est.set_params(n_jobs=2)
importances_parallel = est.feature_importances_
assert_array_almost_equal(importances, importances_parallel)
# Check with sample weights
sample_weight = check_random_state(0).randint(1, 10, len(X))
est = ForestEstimator(n_estimators=10, random_state=0, criterion=criterion)
est.fit(X, y, sample_weight=sample_weight)
importances = est.feature_importances_
assert np.all(importances >= 0.0)
for scale in [0.5, 100]:
est = ForestEstimator(n_estimators=10, random_state=0, criterion=criterion)
est.fit(X, y, sample_weight=scale * sample_weight)
importances_bis = est.feature_importances_
assert np.abs(importances - importances_bis).mean() < tolerance
@pytest.mark.parametrize("dtype", (np.float64, np.float32))
@pytest.mark.parametrize(
"name, criterion",
itertools.chain(
product(FOREST_CLASSIFIERS, ["gini", "log_loss"]),
product(FOREST_REGRESSORS, ["squared_error", "friedman_mse", "absolute_error"]),
),
)
def test_importances(dtype, name, criterion):
tolerance = 0.01
if name in FOREST_REGRESSORS and criterion == "absolute_error":
tolerance = 0.05
check_importances(name, criterion, dtype, tolerance)
def test_importances_asymptotic():
# Check whether variable importances of totally randomized trees
# converge towards their theoretical values (See Louppe et al,
# Understanding variable importances in forests of randomized trees, 2013).
def binomial(k, n):
return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True)
def entropy(samples):
n_samples = len(samples)
entropy = 0.0
for count in np.bincount(samples):
p = 1.0 * count / n_samples
if p > 0:
entropy -= p * np.log2(p)
return entropy
def mdi_importance(X_m, X, y):
n_samples, n_features = X.shape
features = list(range(n_features))
features.pop(X_m)
values = [np.unique(X[:, i]) for i in range(n_features)]
imp = 0.0
for k in range(n_features):
# Weight of each B of size k
coef = 1.0 / (binomial(k, n_features) * (n_features - k))
# For all B of size k
for B in combinations(features, k):
# For all values B=b
for b in product(*[values[B[j]] for j in range(k)]):
mask_b = np.ones(n_samples, dtype=bool)
for j in range(k):
mask_b &= X[:, B[j]] == b[j]
X_, y_ = X[mask_b, :], y[mask_b]
n_samples_b = len(X_)
if n_samples_b > 0:
children = []
for xi in values[X_m]:
mask_xi = X_[:, X_m] == xi
children.append(y_[mask_xi])
imp += (
coef
* (1.0 * n_samples_b / n_samples) # P(B=b)
* (
entropy(y_)
- sum(
[
entropy(c) * len(c) / n_samples_b
for c in children
]
)
)
)
return imp
data = np.array(
[
[0, 0, 1, 0, 0, 1, 0, 1],
[1, 0, 1, 1, 1, 0, 1, 2],
[1, 0, 1, 1, 0, 1, 1, 3],
[0, 1, 1, 1, 0, 1, 0, 4],
[1, 1, 0, 1, 0, 1, 1, 5],
[1, 1, 0, 1, 1, 1, 1, 6],
[1, 0, 1, 0, 0, 1, 0, 7],
[1, 1, 1, 1, 1, 1, 1, 8],
[1, 1, 1, 1, 0, 1, 1, 9],
[1, 1, 1, 0, 1, 1, 1, 0],
]
)
X, y = np.array(data[:, :7], dtype=bool), data[:, 7]
n_features = X.shape[1]
# Compute true importances
true_importances = np.zeros(n_features)
for i in range(n_features):
true_importances[i] = mdi_importance(i, X, y)
# Estimate importances with totally randomized trees
clf = ExtraTreesClassifier(
n_estimators=500, max_features=1, criterion="log_loss", random_state=0
).fit(X, y)
importances = (
sum(
tree.tree_.compute_feature_importances(normalize=False)
for tree in clf.estimators_
)
/ clf.n_estimators
)
# Check correctness
assert_almost_equal(entropy(y), sum(importances))
assert np.abs(true_importances - importances).mean() < 0.01
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
def test_unfitted_feature_importances(name):
err_msg = (
"This {} instance is not fitted yet. Call 'fit' with "
"appropriate arguments before using this estimator.".format(name)
)
with pytest.raises(NotFittedError, match=err_msg):
getattr(FOREST_ESTIMATORS[name](), "feature_importances_")
@pytest.mark.parametrize("ForestClassifier", FOREST_CLASSIFIERS.values())
@pytest.mark.parametrize("X_type", ["array", "sparse_csr", "sparse_csc"])
@pytest.mark.parametrize(
"X, y, lower_bound_accuracy",
[
(
*datasets.make_classification(n_samples=300, n_classes=2, random_state=0),
0.9,
),
(
*datasets.make_classification(
n_samples=1000, n_classes=3, n_informative=6, random_state=0
),
0.65,
),
(
iris.data,
iris.target * 2 + 1,
0.65,
),
(
*datasets.make_multilabel_classification(n_samples=300, random_state=0),
0.18,
),
],
)
def test_forest_classifier_oob(ForestClassifier, X, y, X_type, lower_bound_accuracy):
"""Check that OOB score is close to score on a test set."""
X = _convert_container(X, constructor_name=X_type)
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.5,
random_state=0,
)
classifier = ForestClassifier(
n_estimators=40,
bootstrap=True,
oob_score=True,
random_state=0,
)
assert not hasattr(classifier, "oob_score_")
assert not hasattr(classifier, "oob_decision_function_")
classifier.fit(X_train, y_train)
test_score = classifier.score(X_test, y_test)
assert abs(test_score - classifier.oob_score_) <= 0.1
assert classifier.oob_score_ >= lower_bound_accuracy
assert hasattr(classifier, "oob_score_")
assert not hasattr(classifier, "oob_prediction_")
assert hasattr(classifier, "oob_decision_function_")
if y.ndim == 1:
expected_shape = (X_train.shape[0], len(set(y)))
else:
expected_shape = (X_train.shape[0], len(set(y[:, 0])), y.shape[1])
assert classifier.oob_decision_function_.shape == expected_shape
@pytest.mark.parametrize("ForestRegressor", FOREST_REGRESSORS.values())
@pytest.mark.parametrize("X_type", ["array", "sparse_csr", "sparse_csc"])
@pytest.mark.parametrize(
"X, y, lower_bound_r2",
[
(
*datasets.make_regression(
n_samples=500, n_features=10, n_targets=1, random_state=0
),
0.7,
),
(
*datasets.make_regression(
n_samples=500, n_features=10, n_targets=2, random_state=0
),
0.55,
),
],
)
def test_forest_regressor_oob(ForestRegressor, X, y, X_type, lower_bound_r2):
"""Check that forest-based regressor provide an OOB score close to the
score on a test set."""
X = _convert_container(X, constructor_name=X_type)
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.5,
random_state=0,
)
regressor = ForestRegressor(
n_estimators=50,
bootstrap=True,
oob_score=True,
random_state=0,
)
assert not hasattr(regressor, "oob_score_")
assert not hasattr(regressor, "oob_prediction_")
regressor.fit(X_train, y_train)
test_score = regressor.score(X_test, y_test)
assert abs(test_score - regressor.oob_score_) <= 0.1
assert regressor.oob_score_ >= lower_bound_r2
assert hasattr(regressor, "oob_score_")
assert hasattr(regressor, "oob_prediction_")
assert not hasattr(regressor, "oob_decision_function_")
if y.ndim == 1:
expected_shape = (X_train.shape[0],)
else:
expected_shape = (X_train.shape[0], y.ndim)
assert regressor.oob_prediction_.shape == expected_shape
@pytest.mark.parametrize("ForestEstimator", FOREST_CLASSIFIERS_REGRESSORS.values())
def test_forest_oob_warning(ForestEstimator):
"""Check that a warning is raised when not enough estimator and the OOB
estimates will be inaccurate."""
estimator = ForestEstimator(
n_estimators=1,
oob_score=True,
bootstrap=True,
random_state=0,
)
with pytest.warns(UserWarning, match="Some inputs do not have OOB scores"):
estimator.fit(iris.data, iris.target)
@pytest.mark.parametrize("ForestEstimator", FOREST_CLASSIFIERS_REGRESSORS.values())
@pytest.mark.parametrize(
"X, y, params, err_msg",
[
(
iris.data,
iris.target,
{"oob_score": True, "bootstrap": False},
"Out of bag estimation only available if bootstrap=True",
),
(
iris.data,
rng.randint(low=0, high=5, size=(iris.data.shape[0], 2)),
{"oob_score": True, "bootstrap": True},
"The type of target cannot be used to compute OOB estimates",
),
],
)
def test_forest_oob_error(ForestEstimator, X, y, params, err_msg):
estimator = ForestEstimator(**params)
with pytest.raises(ValueError, match=err_msg):
estimator.fit(X, y)
@pytest.mark.parametrize("oob_score", [True, False])
def test_random_trees_embedding_raise_error_oob(oob_score):
with pytest.raises(TypeError, match="got an unexpected keyword argument"):
RandomTreesEmbedding(oob_score=oob_score)
with pytest.raises(NotImplementedError, match="OOB score not supported"):
RandomTreesEmbedding()._set_oob_score_and_attributes(X, y)
def check_gridsearch(name):
forest = FOREST_CLASSIFIERS[name]()
clf = GridSearchCV(forest, {"n_estimators": (1, 2), "max_depth": (1, 2)})
clf.fit(iris.data, iris.target)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
def test_gridsearch(name):
# Check that base trees can be grid-searched.
check_gridsearch(name)
def check_parallel(name, X, y):
"""Check parallel computations in classification"""
ForestEstimator = FOREST_ESTIMATORS[name]
forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0)
forest.fit(X, y)
assert len(forest) == 10
forest.set_params(n_jobs=1)
y1 = forest.predict(X)
forest.set_params(n_jobs=2)
y2 = forest.predict(X)
assert_array_almost_equal(y1, y2, 3)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
def test_parallel(name):
if name in FOREST_CLASSIFIERS:
X = iris.data
y = iris.target
elif name in FOREST_REGRESSORS:
X = X_reg
y = y_reg
check_parallel(name, X, y)
def check_pickle(name, X, y):
# Check pickability.
ForestEstimator = FOREST_ESTIMATORS[name]
obj = ForestEstimator(random_state=0)
obj.fit(X, y)
score = obj.score(X, y)
pickle_object = pickle.dumps(obj)
obj2 = pickle.loads(pickle_object)
assert type(obj2) == obj.__class__
score2 = obj2.score(X, y)
assert score == score2
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
def test_pickle(name):
if name in FOREST_CLASSIFIERS:
X = iris.data
y = iris.target
elif name in FOREST_REGRESSORS:
X = X_reg
y = y_reg
check_pickle(name, X[::2], y[::2])
def check_multioutput(name):
# Check estimators on multi-output problems.
X_train = [
[-2, -1],
[-1, -1],
[-1, -2],
[1, 1],
[1, 2],
[2, 1],
[-2, 1],
[-1, 1],
[-1, 2],
[2, -1],
[1, -1],
[1, -2],
]
y_train = [
[-1, 0],
[-1, 0],
[-1, 0],
[1, 1],
[1, 1],
[1, 1],
[-1, 2],
[-1, 2],
[-1, 2],
[1, 3],
[1, 3],
[1, 3],
]
X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]]
y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]]
est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False)
y_pred = est.fit(X_train, y_train).predict(X_test)
assert_array_almost_equal(y_pred, y_test)
if name in FOREST_CLASSIFIERS:
with np.errstate(divide="ignore"):
proba = est.predict_proba(X_test)
assert len(proba) == 2
assert proba[0].shape == (4, 2)
assert proba[1].shape == (4, 4)
log_proba = est.predict_log_proba(X_test)
assert len(log_proba) == 2
assert log_proba[0].shape == (4, 2)
assert log_proba[1].shape == (4, 4)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
def test_multioutput(name):
check_multioutput(name)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
def test_multioutput_string(name):
# Check estimators on multi-output problems with string outputs.
X_train = [
[-2, -1],
[-1, -1],
[-1, -2],
[1, 1],
[1, 2],
[2, 1],
[-2, 1],
[-1, 1],
[-1, 2],
[2, -1],
[1, -1],
[1, -2],
]
y_train = [
["red", "blue"],
["red", "blue"],
["red", "blue"],
["green", "green"],
["green", "green"],
["green", "green"],
["red", "purple"],
["red", "purple"],
["red", "purple"],
["green", "yellow"],
["green", "yellow"],
["green", "yellow"],
]
X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]]
y_test = [
["red", "blue"],
["green", "green"],
["red", "purple"],
["green", "yellow"],
]
est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False)
y_pred = est.fit(X_train, y_train).predict(X_test)
assert_array_equal(y_pred, y_test)
with np.errstate(divide="ignore"):
proba = est.predict_proba(X_test)
assert len(proba) == 2
assert proba[0].shape == (4, 2)
assert proba[1].shape == (4, 4)
log_proba = est.predict_log_proba(X_test)
assert len(log_proba) == 2
assert log_proba[0].shape == (4, 2)
assert log_proba[1].shape == (4, 4)
def check_classes_shape(name):
# Test that n_classes_ and classes_ have proper shape.
ForestClassifier = FOREST_CLASSIFIERS[name]
# Classification, single output
clf = ForestClassifier(random_state=0).fit(X, y)
assert clf.n_classes_ == 2
assert_array_equal(clf.classes_, [-1, 1])
# Classification, multi-output
_y = np.vstack((y, np.array(y) * 2)).T
clf = ForestClassifier(random_state=0).fit(X, _y)
assert_array_equal(clf.n_classes_, [2, 2])
assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]])
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
def test_classes_shape(name):
check_classes_shape(name)
def test_random_trees_dense_type():
# Test that the `sparse_output` parameter of RandomTreesEmbedding
# works by returning a dense array.
# Create the RTE with sparse=False
hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False)
X, y = datasets.make_circles(factor=0.5)
X_transformed = hasher.fit_transform(X)
# Assert that type is ndarray, not scipy.sparse.csr_matrix
assert type(X_transformed) == np.ndarray
def test_random_trees_dense_equal():
# Test that the `sparse_output` parameter of RandomTreesEmbedding
# works by returning the same array for both argument values.
# Create the RTEs
hasher_dense = RandomTreesEmbedding(
n_estimators=10, sparse_output=False, random_state=0
)
hasher_sparse = RandomTreesEmbedding(
n_estimators=10, sparse_output=True, random_state=0
)
X, y = datasets.make_circles(factor=0.5)
X_transformed_dense = hasher_dense.fit_transform(X)
X_transformed_sparse = hasher_sparse.fit_transform(X)
# Assert that dense and sparse hashers have same array.
assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense)
# Ignore warnings from switching to more power iterations in randomized_svd
@ignore_warnings
def test_random_hasher():
# test random forest hashing on circles dataset
# make sure that it is linearly separable.
# even after projected to two SVD dimensions
# Note: Not all random_states produce perfect results.
hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
X, y = datasets.make_circles(factor=0.5)
X_transformed = hasher.fit_transform(X)
# test fit and transform:
hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray())
# one leaf active per data point per forest
assert X_transformed.shape[0] == X.shape[0]
assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators)
svd = TruncatedSVD(n_components=2)
X_reduced = svd.fit_transform(X_transformed)
linear_clf = LinearSVC()
linear_clf.fit(X_reduced, y)
assert linear_clf.score(X_reduced, y) == 1.0
def test_random_hasher_sparse_data():
X, y = datasets.make_multilabel_classification(random_state=0)
hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
X_transformed = hasher.fit_transform(X)
X_transformed_sparse = hasher.fit_transform(csc_matrix(X))
assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray())
def test_parallel_train():
rng = check_random_state(12321)
n_samples, n_features = 80, 30
X_train = rng.randn(n_samples, n_features)
y_train = rng.randint(0, 2, n_samples)
clfs = [
RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(
X_train, y_train
)
for n_jobs in [1, 2, 3, 8, 16, 32]
]
X_test = rng.randn(n_samples, n_features)
probas = [clf.predict_proba(X_test) for clf in clfs]
for proba1, proba2 in zip(probas, probas[1:]):
assert_array_almost_equal(proba1, proba2)
def test_distribution():
rng = check_random_state(12321)
# Single variable with 4 values
X = rng.randint(0, 4, size=(1000, 1))
y = rng.rand(1000)
n_trees = 500
reg = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y)
uniques = defaultdict(int)
for tree in reg.estimators_:
tree = "".join(
("%d,%d/" % (f, int(t)) if f >= 0 else "-")
for f, t in zip(tree.tree_.feature, tree.tree_.threshold)
)
uniques[tree] += 1
uniques = sorted([(1.0 * count / n_trees, tree) for tree, count in uniques.items()])
# On a single variable problem where X_0 has 4 equiprobable values, there
# are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of
# them has probability 1/3 while the 4 others have probability 1/6.
assert len(uniques) == 5
assert 0.20 > uniques[0][0] # Rough approximation of 1/6.
assert 0.20 > uniques[1][0]
assert 0.20 > uniques[2][0]
assert 0.20 > uniques[3][0]
assert uniques[4][0] > 0.3
assert uniques[4][1] == "0,1/0,0/--0,2/--"
# Two variables, one with 2 values, one with 3 values
X = np.empty((1000, 2))
X[:, 0] = np.random.randint(0, 2, 1000)
X[:, 1] = np.random.randint(0, 3, 1000)
y = rng.rand(1000)
reg = ExtraTreesRegressor(max_features=1, random_state=1).fit(X, y)
uniques = defaultdict(int)
for tree in reg.estimators_:
tree = "".join(
("%d,%d/" % (f, int(t)) if f >= 0 else "-")
for f, t in zip(tree.tree_.feature, tree.tree_.threshold)
)
uniques[tree] += 1
uniques = [(count, tree) for tree, count in uniques.items()]
assert len(uniques) == 8
def check_max_leaf_nodes_max_depth(name):
X, y = hastie_X, hastie_y
# Test precedence of max_leaf_nodes over max_depth.
ForestEstimator = FOREST_ESTIMATORS[name]
est = ForestEstimator(
max_depth=1, max_leaf_nodes=4, n_estimators=1, random_state=0
).fit(X, y)
assert est.estimators_[0].get_depth() == 1
est = ForestEstimator(max_depth=1, n_estimators=1, random_state=0).fit(X, y)
assert est.estimators_[0].get_depth() == 1
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
def test_max_leaf_nodes_max_depth(name):
check_max_leaf_nodes_max_depth(name)
def check_min_samples_split(name):
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
est = ForestEstimator(min_samples_split=10, n_estimators=1, random_state=0)
est.fit(X, y)
node_idx = est.estimators_[0].tree_.children_left != -1
node_samples = est.estimators_[0].tree_.n_node_samples[node_idx]
assert np.min(node_samples) > len(X) * 0.5 - 1, "Failed with {0}".format(name)
est = ForestEstimator(min_samples_split=0.5, n_estimators=1, random_state=0)
est.fit(X, y)
node_idx = est.estimators_[0].tree_.children_left != -1
node_samples = est.estimators_[0].tree_.n_node_samples[node_idx]
assert np.min(node_samples) > len(X) * 0.5 - 1, "Failed with {0}".format(name)
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
def test_min_samples_split(name):
check_min_samples_split(name)
def check_min_samples_leaf(name):
X, y = hastie_X, hastie_y
# Test if leaves contain more than leaf_count training examples
ForestEstimator = FOREST_ESTIMATORS[name]
est = ForestEstimator(min_samples_leaf=5, n_estimators=1, random_state=0)
est.fit(X, y)
out = est.estimators_[0].tree_.apply(X)
node_counts = np.bincount(out)
# drop inner nodes
leaf_count = node_counts[node_counts != 0]
assert np.min(leaf_count) > 4, "Failed with {0}".format(name)
est = ForestEstimator(min_samples_leaf=0.25, n_estimators=1, random_state=0)
est.fit(X, y)
out = est.estimators_[0].tree_.apply(X)
node_counts = np.bincount(out)
# drop inner nodes
leaf_count = node_counts[node_counts != 0]
assert np.min(leaf_count) > len(X) * 0.25 - 1, "Failed with {0}".format(name)
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
def test_min_samples_leaf(name):
check_min_samples_leaf(name)
def check_min_weight_fraction_leaf(name):
X, y = hastie_X, hastie_y
# Test if leaves contain at least min_weight_fraction_leaf of the
# training set
ForestEstimator = FOREST_ESTIMATORS[name]
rng = np.random.RandomState(0)
weights = rng.rand(X.shape[0])
total_weight = np.sum(weights)
# test both DepthFirstTreeBuilder and BestFirstTreeBuilder
# by setting max_leaf_nodes
for frac in np.linspace(0, 0.5, 6):
est = ForestEstimator(
min_weight_fraction_leaf=frac, n_estimators=1, random_state=0
)
if "RandomForest" in name:
est.bootstrap = False
est.fit(X, y, sample_weight=weights)
out = est.estimators_[0].tree_.apply(X)
node_weights = np.bincount(out, weights=weights)
# drop inner nodes
leaf_weights = node_weights[node_weights != 0]
assert (
np.min(leaf_weights) >= total_weight * est.min_weight_fraction_leaf
), "Failed with {0} min_weight_fraction_leaf={1}".format(
name, est.min_weight_fraction_leaf
)
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
def test_min_weight_fraction_leaf(name):
check_min_weight_fraction_leaf(name)
def check_sparse_input(name, X, X_sparse, y):
ForestEstimator = FOREST_ESTIMATORS[name]
dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y)
sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y)
assert_array_almost_equal(sparse.apply(X), dense.apply(X))
if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS:
assert_array_almost_equal(sparse.predict(X), dense.predict(X))
assert_array_almost_equal(
sparse.feature_importances_, dense.feature_importances_
)
if name in FOREST_CLASSIFIERS:
assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X))
assert_array_almost_equal(
sparse.predict_log_proba(X), dense.predict_log_proba(X)
)
if name in FOREST_TRANSFORMERS:
assert_array_almost_equal(
sparse.transform(X).toarray(), dense.transform(X).toarray()
)
assert_array_almost_equal(
sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray()
)
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
@pytest.mark.parametrize("sparse_matrix", (csr_matrix, csc_matrix, coo_matrix))
def test_sparse_input(name, sparse_matrix):
X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50)
check_sparse_input(name, X, sparse_matrix(X), y)
def check_memory_layout(name, dtype):
# Check that it works no matter the memory layout
est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False)
# Nothing
X = np.asarray(iris.data, dtype=dtype)
y = iris.target
assert_array_almost_equal(est.fit(X, y).predict(X), y)
# C-order
X = np.asarray(iris.data, order="C", dtype=dtype)
y = iris.target
assert_array_almost_equal(est.fit(X, y).predict(X), y)
# F-order
X = np.asarray(iris.data, order="F", dtype=dtype)
y = iris.target
assert_array_almost_equal(est.fit(X, y).predict(X), y)
# Contiguous
X = np.ascontiguousarray(iris.data, dtype=dtype)
y = iris.target
assert_array_almost_equal(est.fit(X, y).predict(X), y)
if est.estimator.splitter in SPARSE_SPLITTERS:
# csr matrix
X = csr_matrix(iris.data, dtype=dtype)
y = iris.target
assert_array_almost_equal(est.fit(X, y).predict(X), y)
# csc_matrix
X = csc_matrix(iris.data, dtype=dtype)
y = iris.target
assert_array_almost_equal(est.fit(X, y).predict(X), y)
# coo_matrix
X = coo_matrix(iris.data, dtype=dtype)
y = iris.target
assert_array_almost_equal(est.fit(X, y).predict(X), y)
# Strided
X = np.asarray(iris.data[::3], dtype=dtype)
y = iris.target[::3]
assert_array_almost_equal(est.fit(X, y).predict(X), y)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
@pytest.mark.parametrize("dtype", (np.float64, np.float32))
def test_memory_layout(name, dtype):
check_memory_layout(name, dtype)
@ignore_warnings
def check_1d_input(name, X, X_2d, y):
ForestEstimator = FOREST_ESTIMATORS[name]
with pytest.raises(ValueError):
ForestEstimator(n_estimators=1, random_state=0).fit(X, y)
est = ForestEstimator(random_state=0)
est.fit(X_2d, y)
if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS:
with pytest.raises(ValueError):
est.predict(X)
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
def test_1d_input(name):
X = iris.data[:, 0]
X_2d = iris.data[:, 0].reshape((-1, 1))
y = iris.target
with ignore_warnings():
check_1d_input(name, X, X_2d, y)
def check_class_weights(name):
# Check class_weights resemble sample_weights behavior.
ForestClassifier = FOREST_CLASSIFIERS[name]
# Iris is balanced, so no effect expected for using 'balanced' weights
clf1 = ForestClassifier(random_state=0)
clf1.fit(iris.data, iris.target)
clf2 = ForestClassifier(class_weight="balanced", random_state=0)
clf2.fit(iris.data, iris.target)
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)
# Make a multi-output problem with three copies of Iris
iris_multi = np.vstack((iris.target, iris.target, iris.target)).T
# Create user-defined weights that should balance over the outputs
clf3 = ForestClassifier(
class_weight=[
{0: 2.0, 1: 2.0, 2: 1.0},
{0: 2.0, 1: 1.0, 2: 2.0},
{0: 1.0, 1: 2.0, 2: 2.0},
],
random_state=0,
)
clf3.fit(iris.data, iris_multi)
assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_)
# Check against multi-output "balanced" which should also have no effect
clf4 = ForestClassifier(class_weight="balanced", random_state=0)
clf4.fit(iris.data, iris_multi)
assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_)
# Inflate importance of class 1, check against user-defined weights
sample_weight = np.ones(iris.target.shape)
sample_weight[iris.target == 1] *= 100
class_weight = {0: 1.0, 1: 100.0, 2: 1.0}
clf1 = ForestClassifier(random_state=0)
clf1.fit(iris.data, iris.target, sample_weight)
clf2 = ForestClassifier(class_weight=class_weight, random_state=0)
clf2.fit(iris.data, iris.target)
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)
# Check that sample_weight and class_weight are multiplicative
clf1 = ForestClassifier(random_state=0)
clf1.fit(iris.data, iris.target, sample_weight**2)
clf2 = ForestClassifier(class_weight=class_weight, random_state=0)
clf2.fit(iris.data, iris.target, sample_weight)
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
def test_class_weights(name):
check_class_weights(name)
def check_class_weight_balanced_and_bootstrap_multi_output(name):
# Test class_weight works for multi-output"""
ForestClassifier = FOREST_CLASSIFIERS[name]
_y = np.vstack((y, np.array(y) * 2)).T
clf = ForestClassifier(class_weight="balanced", random_state=0)
clf.fit(X, _y)
clf = ForestClassifier(
class_weight=[{-1: 0.5, 1: 1.0}, {-2: 1.0, 2: 1.0}], random_state=0
)
clf.fit(X, _y)
# smoke test for balanced subsample
clf = ForestClassifier(class_weight="balanced_subsample", random_state=0)
clf.fit(X, _y)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
def test_class_weight_balanced_and_bootstrap_multi_output(name):
check_class_weight_balanced_and_bootstrap_multi_output(name)
def check_class_weight_errors(name):
# Test if class_weight raises errors and warnings when expected.
ForestClassifier = FOREST_CLASSIFIERS[name]
_y = np.vstack((y, np.array(y) * 2)).T
# Warning warm_start with preset
clf = ForestClassifier(class_weight="balanced", warm_start=True, random_state=0)
clf.fit(X, y)
warn_msg = (
"Warm-start fitting without increasing n_estimators does not fit new trees."
)
with pytest.warns(UserWarning, match=warn_msg):
clf.fit(X, _y)
# Incorrect length list for multi-output
clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.0}], random_state=0)
with pytest.raises(ValueError):
clf.fit(X, _y)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
def test_class_weight_errors(name):
check_class_weight_errors(name)
def check_warm_start(name, random_state=42):
# Test if fitting incrementally with warm start gives a forest of the
# right size and the same results as a normal fit.
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
est_ws = None
for n_estimators in [5, 10]:
if est_ws is None:
est_ws = ForestEstimator(
n_estimators=n_estimators, random_state=random_state, warm_start=True
)
else:
est_ws.set_params(n_estimators=n_estimators)
est_ws.fit(X, y)
assert len(est_ws) == n_estimators
est_no_ws = ForestEstimator(
n_estimators=10, random_state=random_state, warm_start=False
)
est_no_ws.fit(X, y)
assert set([tree.random_state for tree in est_ws]) == set(
[tree.random_state for tree in est_no_ws]
)
assert_array_equal(
est_ws.apply(X), est_no_ws.apply(X), err_msg="Failed with {0}".format(name)
)
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
def test_warm_start(name):
check_warm_start(name)
def check_warm_start_clear(name):
# Test if fit clears state and grows a new forest when warm_start==False.
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1)
est.fit(X, y)
est_2 = ForestEstimator(
n_estimators=5, max_depth=1, warm_start=True, random_state=2
)
est_2.fit(X, y) # inits state
est_2.set_params(warm_start=False, random_state=1)
est_2.fit(X, y) # clears old state and equals est
assert_array_almost_equal(est_2.apply(X), est.apply(X))
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
def test_warm_start_clear(name):
check_warm_start_clear(name)
def check_warm_start_smaller_n_estimators(name):
# Test if warm start second fit with smaller n_estimators raises error.
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True)
est.fit(X, y)
est.set_params(n_estimators=4)
with pytest.raises(ValueError):
est.fit(X, y)
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
def test_warm_start_smaller_n_estimators(name):
check_warm_start_smaller_n_estimators(name)
def check_warm_start_equal_n_estimators(name):
# Test if warm start with equal n_estimators does nothing and returns the
# same forest and raises a warning.
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
est = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1)
est.fit(X, y)
est_2 = ForestEstimator(
n_estimators=5, max_depth=3, warm_start=True, random_state=1
)
est_2.fit(X, y)
# Now est_2 equals est.
est_2.set_params(random_state=2)
warn_msg = (
"Warm-start fitting without increasing n_estimators does not fit new trees."
)
with pytest.warns(UserWarning, match=warn_msg):
est_2.fit(X, y)
# If we had fit the trees again we would have got a different forest as we
# changed the random state.
assert_array_equal(est.apply(X), est_2.apply(X))
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
def test_warm_start_equal_n_estimators(name):
check_warm_start_equal_n_estimators(name)
def check_warm_start_oob(name):
# Test that the warm start computes oob score when asked.
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
# Use 15 estimators to avoid 'some inputs do not have OOB scores' warning.
est = ForestEstimator(
n_estimators=15,
max_depth=3,
warm_start=False,
random_state=1,
bootstrap=True,
oob_score=True,
)
est.fit(X, y)
est_2 = ForestEstimator(
n_estimators=5,
max_depth=3,
warm_start=False,
random_state=1,
bootstrap=True,
oob_score=False,
)
est_2.fit(X, y)
est_2.set_params(warm_start=True, oob_score=True, n_estimators=15)
est_2.fit(X, y)
assert hasattr(est_2, "oob_score_")
assert est.oob_score_ == est_2.oob_score_
# Test that oob_score is computed even if we don't need to train
# additional trees.
est_3 = ForestEstimator(
n_estimators=15,
max_depth=3,
warm_start=True,
random_state=1,
bootstrap=True,
oob_score=False,
)
est_3.fit(X, y)
assert not hasattr(est_3, "oob_score_")
est_3.set_params(oob_score=True)
ignore_warnings(est_3.fit)(X, y)
assert est.oob_score_ == est_3.oob_score_
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
def test_warm_start_oob(name):
check_warm_start_oob(name)
def test_dtype_convert(n_classes=15):
classifier = RandomForestClassifier(random_state=0, bootstrap=False)
X = np.eye(n_classes)
y = [ch for ch in "ABCDEFGHIJKLMNOPQRSTU"[:n_classes]]
result = classifier.fit(X, y).predict(X)
assert_array_equal(classifier.classes_, y)
assert_array_equal(result, y)
def check_decision_path(name):
X, y = hastie_X, hastie_y
n_samples = X.shape[0]
ForestEstimator = FOREST_ESTIMATORS[name]
est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1)
est.fit(X, y)
indicator, n_nodes_ptr = est.decision_path(X)
assert indicator.shape[1] == n_nodes_ptr[-1]
assert indicator.shape[0] == n_samples
assert_array_equal(
np.diff(n_nodes_ptr), [e.tree_.node_count for e in est.estimators_]
)
# Assert that leaves index are correct
leaves = est.apply(X)
for est_id in range(leaves.shape[1]):
leave_indicator = [
indicator[i, n_nodes_ptr[est_id] + j]
for i, j in enumerate(leaves[:, est_id])
]
assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples))
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
def test_decision_path(name):
check_decision_path(name)
def test_min_impurity_decrease():
X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
all_estimators = [
RandomForestClassifier,
RandomForestRegressor,
ExtraTreesClassifier,
ExtraTreesRegressor,
]
for Estimator in all_estimators:
est = Estimator(min_impurity_decrease=0.1)
est.fit(X, y)
for tree in est.estimators_:
# Simply check if the parameter is passed on correctly. Tree tests
# will suffice for the actual working of this param
assert tree.min_impurity_decrease == 0.1
def test_poisson_y_positive_check():
est = RandomForestRegressor(criterion="poisson")
X = np.zeros((3, 3))
y = [-1, 1, 3]
err_msg = (
r"Some value\(s\) of y are negative which is "
r"not allowed for Poisson regression."
)
with pytest.raises(ValueError, match=err_msg):
est.fit(X, y)
y = [0, 0, 0]
err_msg = (
r"Sum of y is not strictly positive which "
r"is necessary for Poisson regression."
)
with pytest.raises(ValueError, match=err_msg):
est.fit(X, y)
# mypy error: Variable "DEFAULT_JOBLIB_BACKEND" is not valid type
class MyBackend(DEFAULT_JOBLIB_BACKEND): # type: ignore
def __init__(self, *args, **kwargs):
self.count = 0
super().__init__(*args, **kwargs)
def start_call(self):
self.count += 1
return super().start_call()
joblib.register_parallel_backend("testing", MyBackend)
@skip_if_no_parallel
def test_backend_respected():
clf = RandomForestClassifier(n_estimators=10, n_jobs=2)
with joblib.parallel_backend("testing") as (ba, n_jobs):
clf.fit(X, y)
assert ba.count > 0
# predict_proba requires shared memory. Ensure that's honored.
with joblib.parallel_backend("testing") as (ba, _):
clf.predict_proba(X)
assert ba.count == 0
def test_forest_feature_importances_sum():
X, y = make_classification(
n_samples=15, n_informative=3, random_state=1, n_classes=3
)
clf = RandomForestClassifier(
min_samples_leaf=5, random_state=42, n_estimators=200
).fit(X, y)
assert math.isclose(1, clf.feature_importances_.sum(), abs_tol=1e-7)
def test_forest_degenerate_feature_importances():
# build a forest of single node trees. See #13636
X = np.zeros((10, 10))
y = np.ones((10,))
gbr = RandomForestRegressor(n_estimators=10).fit(X, y)
assert_array_equal(gbr.feature_importances_, np.zeros(10, dtype=np.float64))
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
def test_max_samples_bootstrap(name):
# Check invalid `max_samples` values
est = FOREST_CLASSIFIERS_REGRESSORS[name](bootstrap=False, max_samples=0.5)
err_msg = (
r"`max_sample` cannot be set if `bootstrap=False`. "
r"Either switch to `bootstrap=True` or set "
r"`max_sample=None`."
)
with pytest.raises(ValueError, match=err_msg):
est.fit(X, y)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
def test_large_max_samples_exception(name):
# Check invalid `max_samples`
est = FOREST_CLASSIFIERS_REGRESSORS[name](bootstrap=True, max_samples=int(1e9))
match = "`max_samples` must be <= n_samples=6 but got value 1000000000"
with pytest.raises(ValueError, match=match):
est.fit(X, y)
@pytest.mark.parametrize("name", FOREST_REGRESSORS)
def test_max_samples_boundary_regressors(name):
X_train, X_test, y_train, y_test = train_test_split(
X_reg, y_reg, train_size=0.7, test_size=0.3, random_state=0
)
ms_1_model = FOREST_REGRESSORS[name](
bootstrap=True, max_samples=1.0, random_state=0
)
ms_1_predict = ms_1_model.fit(X_train, y_train).predict(X_test)
ms_None_model = FOREST_REGRESSORS[name](
bootstrap=True, max_samples=None, random_state=0
)
ms_None_predict = ms_None_model.fit(X_train, y_train).predict(X_test)
ms_1_ms = mean_squared_error(ms_1_predict, y_test)
ms_None_ms = mean_squared_error(ms_None_predict, y_test)
assert ms_1_ms == pytest.approx(ms_None_ms)
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
def test_max_samples_boundary_classifiers(name):
X_train, X_test, y_train, _ = train_test_split(
X_large, y_large, random_state=0, stratify=y_large
)
ms_1_model = FOREST_CLASSIFIERS[name](
bootstrap=True, max_samples=1.0, random_state=0
)
ms_1_proba = ms_1_model.fit(X_train, y_train).predict_proba(X_test)
ms_None_model = FOREST_CLASSIFIERS[name](
bootstrap=True, max_samples=None, random_state=0
)
ms_None_proba = ms_None_model.fit(X_train, y_train).predict_proba(X_test)
np.testing.assert_allclose(ms_1_proba, ms_None_proba)
def test_forest_y_sparse():
X = [[1, 2, 3]]
y = csr_matrix([4, 5, 6])
est = RandomForestClassifier()
msg = "sparse multilabel-indicator for y is not supported."
with pytest.raises(ValueError, match=msg):
est.fit(X, y)
@pytest.mark.parametrize("ForestClass", [RandomForestClassifier, RandomForestRegressor])
def test_little_tree_with_small_max_samples(ForestClass):
rng = np.random.RandomState(1)
X = rng.randn(10000, 2)
y = rng.randn(10000) > 0
# First fit with no restriction on max samples
est1 = ForestClass(
n_estimators=1,
random_state=rng,
max_samples=None,
)
# Second fit with max samples restricted to just 2
est2 = ForestClass(
n_estimators=1,
random_state=rng,
max_samples=2,
)
est1.fit(X, y)
est2.fit(X, y)
tree1 = est1.estimators_[0].tree_
tree2 = est2.estimators_[0].tree_
msg = "Tree without `max_samples` restriction should have more nodes"
assert tree1.node_count > tree2.node_count, msg
# TODO: Remove in v1.3
@pytest.mark.parametrize(
"Estimator",
[
ExtraTreesClassifier,
ExtraTreesRegressor,
RandomForestClassifier,
RandomForestRegressor,
],
)
def test_max_features_deprecation(Estimator):
"""Check warning raised for max_features="auto" deprecation."""
X = np.array([[1, 2], [3, 4]])
y = np.array([1, 0])
est = Estimator(max_features="auto")
err_msg = (
r"`max_features='auto'` has been deprecated in 1.1 "
r"and will be removed in 1.3. To keep the past behaviour, "
r"explicitly set `max_features=(1.0|'sqrt')` or remove this "
r"parameter as it is also the default value for RandomForest"
r"(Regressors|Classifiers) and ExtraTrees(Regressors|"
r"Classifiers)\."
)
with pytest.warns(FutureWarning, match=err_msg):
est.fit(X, y)
@pytest.mark.parametrize("Forest", FOREST_REGRESSORS)
def test_mse_criterion_object_segfault_smoke_test(Forest):
# This is a smoke test to ensure that passing a mutable criterion
# does not cause a segfault when fitting with concurrent threads.
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/12623
from sklearn.tree._criterion import MSE
y = y_reg.reshape(-1, 1)
n_samples, n_outputs = y.shape
mse_criterion = MSE(n_outputs, n_samples)
est = FOREST_REGRESSORS[Forest](n_estimators=2, n_jobs=2, criterion=mse_criterion)
est.fit(X_reg, y)
def test_random_trees_embedding_feature_names_out():
"""Check feature names out for Random Trees Embedding."""
random_state = np.random.RandomState(0)
X = np.abs(random_state.randn(100, 4))
hasher = RandomTreesEmbedding(
n_estimators=2, max_depth=2, sparse_output=False, random_state=0
).fit(X)
names = hasher.get_feature_names_out()
expected_names = [
f"randomtreesembedding_{tree}_{leaf}"
# Note: nodes with indices 0, 1 and 4 are internal split nodes and
# therefore do not appear in the expected output feature names.
for tree, leaf in [
(0, 2),
(0, 3),
(0, 5),
(0, 6),
(1, 2),
(1, 3),
(1, 5),
(1, 6),
]
]
assert_array_equal(expected_names, names)
# TODO(1.4): remove in 1.4
@pytest.mark.parametrize(
"name",
FOREST_ESTIMATORS,
)
def test_base_estimator_property_deprecated(name):
X = np.array([[1, 2], [3, 4]])
y = np.array([1, 0])
model = FOREST_ESTIMATORS[name]()
model.fit(X, y)
warn_msg = (
"Attribute `base_estimator_` was deprecated in version 1.2 and "
"will be removed in 1.4. Use `estimator_` instead."
)
with pytest.warns(FutureWarning, match=warn_msg):
model.base_estimator_
def test_read_only_buffer(monkeypatch):
"""RandomForestClassifier must work on readonly sparse data.
Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/25333
"""
monkeypatch.setattr(
sklearn.ensemble._forest,
"Parallel",
partial(Parallel, max_nbytes=100),
)
rng = np.random.RandomState(seed=0)
X, y = make_classification(n_samples=100, n_features=200, random_state=rng)
X = csr_matrix(X, copy=True)
clf = RandomForestClassifier(n_jobs=2, random_state=rng)
cross_val_score(clf, X, y, cv=2)
|