1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
|
"""
scikit-learn copy of scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py v1.10
to be deleted after scipy 1.4 becomes a dependency in scikit-lean
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG).
References
----------
.. [1] A. V. Knyazev (2001),
Toward the Optimal Preconditioned Eigensolver: Locally Optimal
Block Preconditioned Conjugate Gradient Method.
SIAM Journal on Scientific Computing 23, no. 2,
pp. 517-541. :doi:`10.1137/S1064827500366124`
.. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007),
Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX)
in hypre and PETSc. :arxiv:`0705.2626`
.. [3] A. V. Knyazev's C and MATLAB implementations:
https://github.com/lobpcg/blopex
"""
import inspect
import warnings
import numpy as np
from scipy.linalg import (inv, eigh, cho_factor, cho_solve,
cholesky, LinAlgError)
from scipy.sparse.linalg import LinearOperator
from scipy.sparse import isspmatrix
from numpy import block as bmat
__all__ = ["lobpcg"]
def _report_nonhermitian(M, name):
"""
Report if `M` is not a Hermitian matrix given its type.
"""
from scipy.linalg import norm
md = M - M.T.conj()
nmd = norm(md, 1)
tol = 10 * np.finfo(M.dtype).eps
tol = max(tol, tol * norm(M, 1))
if nmd > tol:
warnings.warn(
f"Matrix {name} of the type {M.dtype} is not Hermitian: "
f"condition: {nmd} < {tol} fails.",
UserWarning, stacklevel=4
)
def _as2d(ar):
"""
If the input array is 2D return it, if it is 1D, append a dimension,
making it a column vector.
"""
if ar.ndim == 2:
return ar
else: # Assume 1!
aux = np.array(ar, copy=False)
aux.shape = (ar.shape[0], 1)
return aux
def _makeMatMat(m):
if m is None:
return None
elif callable(m):
return lambda v: m(v)
else:
return lambda v: m @ v
def _applyConstraints(blockVectorV, factYBY, blockVectorBY, blockVectorY):
"""Changes blockVectorV in place."""
YBV = np.dot(blockVectorBY.T.conj(), blockVectorV)
tmp = cho_solve(factYBY, YBV)
blockVectorV -= np.dot(blockVectorY, tmp)
def _b_orthonormalize(B, blockVectorV, blockVectorBV=None,
verbosityLevel=0):
"""in-place B-orthonormalize the given block vector using Cholesky."""
normalization = blockVectorV.max(axis=0) + np.finfo(blockVectorV.dtype).eps
blockVectorV = blockVectorV / normalization
if blockVectorBV is None:
if B is not None:
try:
blockVectorBV = B(blockVectorV)
except Exception as e:
if verbosityLevel:
warnings.warn(
f"Secondary MatMul call failed with error\n"
f"{e}\n",
UserWarning, stacklevel=3
)
return None, None, None, normalization
if blockVectorBV.shape != blockVectorV.shape:
raise ValueError(
f"The shape {blockVectorV.shape} "
f"of the orthogonalized matrix not preserved\n"
f"and changed to {blockVectorBV.shape} "
f"after multiplying by the secondary matrix.\n"
)
else:
blockVectorBV = blockVectorV # Shared data!!!
else:
blockVectorBV = blockVectorBV / normalization
VBV = blockVectorV.T.conj() @ blockVectorBV
try:
# VBV is a Cholesky factor from now on...
VBV = cholesky(VBV, overwrite_a=True)
VBV = inv(VBV, overwrite_a=True)
blockVectorV = blockVectorV @ VBV
# blockVectorV = (cho_solve((VBV.T, True), blockVectorV.T)).T
if B is not None:
blockVectorBV = blockVectorBV @ VBV
# blockVectorBV = (cho_solve((VBV.T, True), blockVectorBV.T)).T
return blockVectorV, blockVectorBV, VBV, normalization
except LinAlgError:
if verbosityLevel:
warnings.warn(
"Cholesky has failed.",
UserWarning, stacklevel=3
)
return None, None, None, normalization
def _get_indx(_lambda, num, largest):
"""Get `num` indices into `_lambda` depending on `largest` option."""
ii = np.argsort(_lambda)
if largest:
ii = ii[:-num - 1:-1]
else:
ii = ii[:num]
return ii
def _handle_gramA_gramB_verbosity(gramA, gramB, verbosityLevel):
if verbosityLevel:
_report_nonhermitian(gramA, "gramA")
_report_nonhermitian(gramB, "gramB")
def lobpcg(
A,
X,
B=None,
M=None,
Y=None,
tol=None,
maxiter=None,
largest=True,
verbosityLevel=0,
retLambdaHistory=False,
retResidualNormsHistory=False,
restartControl=20,
):
"""Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG).
LOBPCG is a preconditioned eigensolver for large symmetric positive
definite (SPD) generalized eigenproblems.
Parameters
----------
A : {sparse matrix, dense matrix, LinearOperator, callable object}
The symmetric linear operator of the problem, usually a
sparse matrix. Often called the "stiffness matrix".
X : ndarray, float32 or float64
Initial approximation to the ``k`` eigenvectors (non-sparse). If `A`
has ``shape=(n,n)`` then `X` should have shape ``shape=(n,k)``.
B : {dense matrix, sparse matrix, LinearOperator, callable object}
Optional.
The right hand side operator in a generalized eigenproblem.
By default, ``B = Identity``. Often called the "mass matrix".
M : {dense matrix, sparse matrix, LinearOperator, callable object}
Optional.
Preconditioner to `A`; by default ``M = Identity``.
`M` should approximate the inverse of `A`.
Y : ndarray, float32 or float64, optional.
An n-by-sizeY matrix of constraints (non-sparse), sizeY < n.
The iterations will be performed in the B-orthogonal complement
of the column-space of Y. Y must be full rank.
tol : scalar, optional.
Solver tolerance (stopping criterion).
The default is ``tol=n*sqrt(eps)``.
maxiter : int, optional.
Maximum number of iterations. The default is ``maxiter=20``.
largest : bool, optional.
When True, solve for the largest eigenvalues, otherwise the smallest.
verbosityLevel : int, optional
Controls solver output. The default is ``verbosityLevel=0``.
retLambdaHistory : bool, optional.
Whether to return eigenvalue history. Default is False.
retResidualNormsHistory : bool, optional.
Whether to return history of residual norms. Default is False.
restartControl : int, optional.
Iterations restart if the residuals jump up 2**restartControl times
compared to the smallest ones recorded in retResidualNormsHistory.
The default is ``restartControl=20``, making the restarts rare for
backward compatibility.
Returns
-------
w : ndarray
Array of ``k`` eigenvalues.
v : ndarray
An array of ``k`` eigenvectors. `v` has the same shape as `X`.
lambdas : ndarray, optional
The eigenvalue history, if `retLambdaHistory` is True.
rnorms : ndarray, optional
The history of residual norms, if `retResidualNormsHistory` is True.
Notes
-----
The iterative loop in lobpcg runs maxit=maxiter (or 20 if maxit=None)
iterations at most and finishes earler if the tolerance is met.
Breaking backward compatibility with the previous version, lobpcg
now returns the block of iterative vectors with the best accuracy rather
than the last one iterated, as a cure for possible divergence.
The size of the iteration history output equals to the number of the best
(limited by maxit) iterations plus 3 (initial, final, and postprocessing).
If both ``retLambdaHistory`` and ``retResidualNormsHistory`` are True,
the return tuple has the following format
``(lambda, V, lambda history, residual norms history)``.
In the following ``n`` denotes the matrix size and ``k`` the number
of required eigenvalues (smallest or largest).
The LOBPCG code internally solves eigenproblems of the size ``3k`` on every
iteration by calling the dense eigensolver `eigh`, so if ``k`` is not
small enough compared to ``n``, it makes no sense to call the LOBPCG code.
Moreover, if one calls the LOBPCG algorithm for ``5k > n``, it would likely
break internally, so the code calls the standard function `eigh` instead.
It is not that ``n`` should be large for the LOBPCG to work, but rather the
ratio ``n / k`` should be large. It you call LOBPCG with ``k=1``
and ``n=10``, it works though ``n`` is small. The method is intended
for extremely large ``n / k``.
The convergence speed depends basically on two factors:
1. Relative separation of the seeking eigenvalues from the rest
of the eigenvalues. One can vary ``k`` to improve the absolute
separation and use proper preconditioning to shrink the spectral spread.
For example, a rod vibration test problem (under tests
directory) is ill-conditioned for large ``n``, so convergence will be
slow, unless efficient preconditioning is used. For this specific
problem, a good simple preconditioner function would be a linear solve
for `A`, which is easy to code since `A` is tridiagonal.
2. Quality of the initial approximations `X` to the seeking eigenvectors.
Randomly distributed around the origin vectors work well if no better
choice is known.
References
----------
.. [1] A. V. Knyazev (2001),
Toward the Optimal Preconditioned Eigensolver: Locally Optimal
Block Preconditioned Conjugate Gradient Method.
SIAM Journal on Scientific Computing 23, no. 2,
pp. 517-541. :doi:`10.1137/S1064827500366124`
.. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov
(2007), Block Locally Optimal Preconditioned Eigenvalue Xolvers
(BLOPEX) in hypre and PETSc. :arxiv:`0705.2626`
.. [3] A. V. Knyazev's C and MATLAB implementations:
https://github.com/lobpcg/blopex
Examples
--------
Solve ``A x = lambda x`` with constraints and preconditioning.
>>> import numpy as np
>>> from scipy.sparse import spdiags, issparse
>>> from scipy.sparse.linalg import lobpcg, LinearOperator
The square matrix size:
>>> n = 100
>>> vals = np.arange(1, n + 1)
The first mandatory input parameter, in this test
a sparse 2D array representing the square matrix
of the eigenvalue problem to solve:
>>> A = spdiags(vals, 0, n, n)
>>> A.toarray()
array([[ 1, 0, 0, ..., 0, 0, 0],
[ 0, 2, 0, ..., 0, 0, 0],
[ 0, 0, 3, ..., 0, 0, 0],
...,
[ 0, 0, 0, ..., 98, 0, 0],
[ 0, 0, 0, ..., 0, 99, 0],
[ 0, 0, 0, ..., 0, 0, 100]])
Initial guess for eigenvectors, should have linearly independent
columns. The second mandatory input parameter, a 2D array with the
row dimension determining the number of requested eigenvalues.
If no initial approximations available, randomly oriented vectors
commonly work best, e.g., with components normally disrtibuted
around zero or uniformly distributed on the interval [-1 1].
>>> rng = np.random.default_rng()
>>> X = rng.normal(size=(n, 3))
Constraints - an optional input parameter is a 2D array comprising
of column vectors that the eigenvectors must be orthogonal to:
>>> Y = np.eye(n, 3)
Preconditioner in the inverse of A in this example:
>>> invA = spdiags([1./vals], 0, n, n)
The preconditiner must be defined by a function:
>>> def precond( x ):
... return invA @ x
The argument x of the preconditioner function is a matrix inside `lobpcg`,
thus the use of matrix-matrix product ``@``.
The preconditioner function is passed to lobpcg as a `LinearOperator`:
>>> M = LinearOperator(matvec=precond, matmat=precond,
... shape=(n, n), dtype=np.float64)
Let us now solve the eigenvalue problem for the matrix A:
>>> eigenvalues, _ = lobpcg(A, X, Y=Y, M=M, largest=False)
>>> eigenvalues
array([4., 5., 6.])
Note that the vectors passed in Y are the eigenvectors of the 3 smallest
eigenvalues. The results returned are orthogonal to those.
"""
blockVectorX = X
bestblockVectorX = blockVectorX
blockVectorY = Y
residualTolerance = tol
if maxiter is None:
maxiter = 20
bestIterationNumber = maxiter
sizeY = 0
if blockVectorY is not None:
if len(blockVectorY.shape) != 2:
warnings.warn(
f"Expected rank-2 array for argument Y, instead got "
f"{len(blockVectorY.shape)}, "
f"so ignore it and use no constraints.",
UserWarning, stacklevel=2
)
blockVectorY = None
else:
sizeY = blockVectorY.shape[1]
# Block size.
if blockVectorX is None:
raise ValueError("The mandatory initial matrix X cannot be None")
if len(blockVectorX.shape) != 2:
raise ValueError("expected rank-2 array for argument X")
n, sizeX = blockVectorX.shape
# Data type of iterates, determined by X, must be inexact
if not np.issubdtype(blockVectorX.dtype, np.inexact):
warnings.warn(
f"Data type for argument X is {blockVectorX.dtype}, "
f"which is not inexact, so casted to np.float32.",
UserWarning, stacklevel=2
)
blockVectorX = np.asarray(blockVectorX, dtype=np.float32)
if retLambdaHistory:
lambdaHistory = np.zeros((maxiter + 3, sizeX),
dtype=blockVectorX.dtype)
if retResidualNormsHistory:
residualNormsHistory = np.zeros((maxiter + 3, sizeX),
dtype=blockVectorX.dtype)
if verbosityLevel:
aux = "Solving "
if B is None:
aux += "standard"
else:
aux += "generalized"
aux += " eigenvalue problem with"
if M is None:
aux += "out"
aux += " preconditioning\n\n"
aux += "matrix size %d\n" % n
aux += "block size %d\n\n" % sizeX
if blockVectorY is None:
aux += "No constraints\n\n"
else:
if sizeY > 1:
aux += "%d constraints\n\n" % sizeY
else:
aux += "%d constraint\n\n" % sizeY
print(aux)
if (n - sizeY) < (5 * sizeX):
warnings.warn(
f"The problem size {n} minus the constraints size {sizeY} "
f"is too small relative to the block size {sizeX}. "
f"Using a dense eigensolver instead of LOBPCG iterations."
f"No output of the history of the iterations.",
UserWarning, stacklevel=2
)
sizeX = min(sizeX, n)
if blockVectorY is not None:
raise NotImplementedError(
"The dense eigensolver does not support constraints."
)
# Define the closed range of indices of eigenvalues to return.
if largest:
eigvals = (n - sizeX, n - 1)
else:
eigvals = (0, sizeX - 1)
try:
if isinstance(A, LinearOperator):
A = A(np.eye(n, dtype=int))
elif callable(A):
A = A(np.eye(n, dtype=int))
if A.shape != (n, n):
raise ValueError(
f"The shape {A.shape} of the primary matrix\n"
f"defined by a callable object is wrong.\n"
)
elif isspmatrix(A):
A = A.toarray()
else:
A = np.asarray(A)
except Exception as e:
raise Exception(
f"Primary MatMul call failed with error\n"
f"{e}\n")
if B is not None:
try:
if isinstance(B, LinearOperator):
B = B(np.eye(n, dtype=int))
elif callable(B):
B = B(np.eye(n, dtype=int))
if B.shape != (n, n):
raise ValueError(
f"The shape {B.shape} of the secondary matrix\n"
f"defined by a callable object is wrong.\n"
)
elif isspmatrix(B):
B = B.toarray()
else:
B = np.asarray(B)
except Exception as e:
raise Exception(
f"Secondary MatMul call failed with error\n"
f"{e}\n")
try:
if "subset_by_index" in inspect.signature(eigh).parameters:
# scipy >= 1.5
additional_params = {"subset_by_index": eigvals}
else:
# deprecated in scipy == 1.10
additional_params = {"eigvals": eigvals}
vals, vecs = eigh(A,
B,
check_finite=False,
**additional_params)
if largest:
# Reverse order to be compatible with eigs() in 'LM' mode.
vals = vals[::-1]
vecs = vecs[:, ::-1]
return vals, vecs
except Exception as e:
raise Exception(
f"Dense eigensolver failed with error\n"
f"{e}\n"
)
if (residualTolerance is None) or (residualTolerance <= 0.0):
residualTolerance = np.sqrt(np.finfo(blockVectorX.dtype).eps) * n
A = _makeMatMat(A)
B = _makeMatMat(B)
M = _makeMatMat(M)
# Apply constraints to X.
if blockVectorY is not None:
if B is not None:
blockVectorBY = B(blockVectorY)
if blockVectorBY.shape != blockVectorY.shape:
raise ValueError(
f"The shape {blockVectorY.shape} "
f"of the constraint not preserved\n"
f"and changed to {blockVectorBY.shape} "
f"after multiplying by the secondary matrix.\n"
)
else:
blockVectorBY = blockVectorY
# gramYBY is a dense array.
gramYBY = np.dot(blockVectorY.T.conj(), blockVectorBY)
try:
# gramYBY is a Cholesky factor from now on...
gramYBY = cho_factor(gramYBY)
except LinAlgError as e:
raise ValueError("Linearly dependent constraints") from e
_applyConstraints(blockVectorX, gramYBY, blockVectorBY, blockVectorY)
##
# B-orthonormalize X.
blockVectorX, blockVectorBX, _, _ = _b_orthonormalize(
B, blockVectorX, verbosityLevel=verbosityLevel)
if blockVectorX is None:
raise ValueError("Linearly dependent initial approximations")
##
# Compute the initial Ritz vectors: solve the eigenproblem.
blockVectorAX = A(blockVectorX)
if blockVectorAX.shape != blockVectorX.shape:
raise ValueError(
f"The shape {blockVectorX.shape} "
f"of the initial approximations not preserved\n"
f"and changed to {blockVectorAX.shape} "
f"after multiplying by the primary matrix.\n"
)
gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX)
_lambda, eigBlockVector = eigh(gramXAX, check_finite=False)
ii = _get_indx(_lambda, sizeX, largest)
_lambda = _lambda[ii]
if retLambdaHistory:
lambdaHistory[0, :] = _lambda
eigBlockVector = np.asarray(eigBlockVector[:, ii])
blockVectorX = np.dot(blockVectorX, eigBlockVector)
blockVectorAX = np.dot(blockVectorAX, eigBlockVector)
if B is not None:
blockVectorBX = np.dot(blockVectorBX, eigBlockVector)
##
# Active index set.
activeMask = np.ones((sizeX,), dtype=bool)
##
# Main iteration loop.
blockVectorP = None # set during iteration
blockVectorAP = None
blockVectorBP = None
smallestResidualNorm = np.abs(np.finfo(blockVectorX.dtype).max)
iterationNumber = -1
restart = True
forcedRestart = False
explicitGramFlag = False
while iterationNumber < maxiter:
iterationNumber += 1
if B is not None:
aux = blockVectorBX * _lambda[np.newaxis, :]
else:
aux = blockVectorX * _lambda[np.newaxis, :]
blockVectorR = blockVectorAX - aux
aux = np.sum(blockVectorR.conj() * blockVectorR, 0)
residualNorms = np.sqrt(np.abs(aux))
if retResidualNormsHistory:
residualNormsHistory[iterationNumber, :] = residualNorms
residualNorm = np.sum(np.abs(residualNorms)) / sizeX
if residualNorm < smallestResidualNorm:
smallestResidualNorm = residualNorm
bestIterationNumber = iterationNumber
bestblockVectorX = blockVectorX
elif residualNorm > 2**restartControl * smallestResidualNorm:
forcedRestart = True
blockVectorAX = A(blockVectorX)
if blockVectorAX.shape != blockVectorX.shape:
raise ValueError(
f"The shape {blockVectorX.shape} "
f"of the restarted iterate not preserved\n"
f"and changed to {blockVectorAX.shape} "
f"after multiplying by the primary matrix.\n"
)
if B is not None:
blockVectorBX = B(blockVectorX)
if blockVectorBX.shape != blockVectorX.shape:
raise ValueError(
f"The shape {blockVectorX.shape} "
f"of the restarted iterate not preserved\n"
f"and changed to {blockVectorBX.shape} "
f"after multiplying by the secondary matrix.\n"
)
ii = np.where(residualNorms > residualTolerance, True, False)
activeMask = activeMask & ii
currentBlockSize = activeMask.sum()
if verbosityLevel:
print(f"iteration {iterationNumber}")
print(f"current block size: {currentBlockSize}")
print(f"eigenvalue(s):\n{_lambda}")
print(f"residual norm(s):\n{residualNorms}")
if currentBlockSize == 0:
break
activeBlockVectorR = _as2d(blockVectorR[:, activeMask])
if iterationNumber > 0:
activeBlockVectorP = _as2d(blockVectorP[:, activeMask])
activeBlockVectorAP = _as2d(blockVectorAP[:, activeMask])
if B is not None:
activeBlockVectorBP = _as2d(blockVectorBP[:, activeMask])
if M is not None:
# Apply preconditioner T to the active residuals.
activeBlockVectorR = M(activeBlockVectorR)
##
# Apply constraints to the preconditioned residuals.
if blockVectorY is not None:
_applyConstraints(activeBlockVectorR,
gramYBY,
blockVectorBY,
blockVectorY)
##
# B-orthogonalize the preconditioned residuals to X.
if B is not None:
activeBlockVectorR = activeBlockVectorR - (
blockVectorX @
(blockVectorBX.T.conj() @ activeBlockVectorR)
)
else:
activeBlockVectorR = activeBlockVectorR - (
blockVectorX @
(blockVectorX.T.conj() @ activeBlockVectorR)
)
##
# B-orthonormalize the preconditioned residuals.
aux = _b_orthonormalize(
B, activeBlockVectorR, verbosityLevel=verbosityLevel)
activeBlockVectorR, activeBlockVectorBR, _, _ = aux
if activeBlockVectorR is None:
warnings.warn(
f"Failed at iteration {iterationNumber} with accuracies "
f"{residualNorms}\n not reaching the requested "
f"tolerance {residualTolerance}.",
UserWarning, stacklevel=2
)
break
activeBlockVectorAR = A(activeBlockVectorR)
if iterationNumber > 0:
if B is not None:
aux = _b_orthonormalize(
B, activeBlockVectorP, activeBlockVectorBP,
verbosityLevel=verbosityLevel
)
activeBlockVectorP, activeBlockVectorBP, invR, normal = aux
else:
aux = _b_orthonormalize(B, activeBlockVectorP,
verbosityLevel=verbosityLevel)
activeBlockVectorP, _, invR, normal = aux
# Function _b_orthonormalize returns None if Cholesky fails
if activeBlockVectorP is not None:
activeBlockVectorAP = activeBlockVectorAP / normal
activeBlockVectorAP = np.dot(activeBlockVectorAP, invR)
restart = forcedRestart
else:
restart = True
##
# Perform the Rayleigh Ritz Procedure:
# Compute symmetric Gram matrices:
if activeBlockVectorAR.dtype == "float32":
myeps = 1
else:
myeps = np.sqrt(np.finfo(activeBlockVectorR.dtype).eps)
if residualNorms.max() > myeps and not explicitGramFlag:
explicitGramFlag = False
else:
# Once explicitGramFlag, forever explicitGramFlag.
explicitGramFlag = True
# Shared memory assingments to simplify the code
if B is None:
blockVectorBX = blockVectorX
activeBlockVectorBR = activeBlockVectorR
if not restart:
activeBlockVectorBP = activeBlockVectorP
# Common submatrices:
gramXAR = np.dot(blockVectorX.T.conj(), activeBlockVectorAR)
gramRAR = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAR)
gramDtype = activeBlockVectorAR.dtype
if explicitGramFlag:
gramRAR = (gramRAR + gramRAR.T.conj()) / 2
gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX)
gramXAX = (gramXAX + gramXAX.T.conj()) / 2
gramXBX = np.dot(blockVectorX.T.conj(), blockVectorBX)
gramRBR = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBR)
gramXBR = np.dot(blockVectorX.T.conj(), activeBlockVectorBR)
else:
gramXAX = np.diag(_lambda).astype(gramDtype)
gramXBX = np.eye(sizeX, dtype=gramDtype)
gramRBR = np.eye(currentBlockSize, dtype=gramDtype)
gramXBR = np.zeros((sizeX, currentBlockSize), dtype=gramDtype)
if not restart:
gramXAP = np.dot(blockVectorX.T.conj(), activeBlockVectorAP)
gramRAP = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAP)
gramPAP = np.dot(activeBlockVectorP.T.conj(), activeBlockVectorAP)
gramXBP = np.dot(blockVectorX.T.conj(), activeBlockVectorBP)
gramRBP = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBP)
if explicitGramFlag:
gramPAP = (gramPAP + gramPAP.T.conj()) / 2
gramPBP = np.dot(activeBlockVectorP.T.conj(),
activeBlockVectorBP)
else:
gramPBP = np.eye(currentBlockSize, dtype=gramDtype)
gramA = bmat(
[
[gramXAX, gramXAR, gramXAP],
[gramXAR.T.conj(), gramRAR, gramRAP],
[gramXAP.T.conj(), gramRAP.T.conj(), gramPAP],
]
)
gramB = bmat(
[
[gramXBX, gramXBR, gramXBP],
[gramXBR.T.conj(), gramRBR, gramRBP],
[gramXBP.T.conj(), gramRBP.T.conj(), gramPBP],
]
)
_handle_gramA_gramB_verbosity(gramA, gramB, verbosityLevel)
try:
_lambda, eigBlockVector = eigh(gramA,
gramB,
check_finite=False)
except LinAlgError as e:
# raise ValueError("eigh failed in lobpcg iterations") from e
if verbosityLevel:
warnings.warn(
f"eigh failed at iteration {iterationNumber} \n"
f"with error {e} causing a restart.\n",
UserWarning, stacklevel=2
)
# try again after dropping the direction vectors P from RR
restart = True
if restart:
gramA = bmat([[gramXAX, gramXAR], [gramXAR.T.conj(), gramRAR]])
gramB = bmat([[gramXBX, gramXBR], [gramXBR.T.conj(), gramRBR]])
_handle_gramA_gramB_verbosity(gramA, gramB, verbosityLevel)
try:
_lambda, eigBlockVector = eigh(gramA,
gramB,
check_finite=False)
except LinAlgError as e:
# raise ValueError("eigh failed in lobpcg iterations") from e
warnings.warn(
f"eigh failed at iteration {iterationNumber} with error\n"
f"{e}\n",
UserWarning, stacklevel=2
)
break
ii = _get_indx(_lambda, sizeX, largest)
_lambda = _lambda[ii]
eigBlockVector = eigBlockVector[:, ii]
if retLambdaHistory:
lambdaHistory[iterationNumber + 1, :] = _lambda
# Compute Ritz vectors.
if B is not None:
if not restart:
eigBlockVectorX = eigBlockVector[:sizeX]
eigBlockVectorR = eigBlockVector[sizeX:
sizeX + currentBlockSize]
eigBlockVectorP = eigBlockVector[sizeX + currentBlockSize:]
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
pp += np.dot(activeBlockVectorP, eigBlockVectorP)
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
app += np.dot(activeBlockVectorAP, eigBlockVectorP)
bpp = np.dot(activeBlockVectorBR, eigBlockVectorR)
bpp += np.dot(activeBlockVectorBP, eigBlockVectorP)
else:
eigBlockVectorX = eigBlockVector[:sizeX]
eigBlockVectorR = eigBlockVector[sizeX:]
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
bpp = np.dot(activeBlockVectorBR, eigBlockVectorR)
blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp
blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app
blockVectorBX = np.dot(blockVectorBX, eigBlockVectorX) + bpp
blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp
else:
if not restart:
eigBlockVectorX = eigBlockVector[:sizeX]
eigBlockVectorR = eigBlockVector[sizeX:
sizeX + currentBlockSize]
eigBlockVectorP = eigBlockVector[sizeX + currentBlockSize:]
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
pp += np.dot(activeBlockVectorP, eigBlockVectorP)
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
app += np.dot(activeBlockVectorAP, eigBlockVectorP)
else:
eigBlockVectorX = eigBlockVector[:sizeX]
eigBlockVectorR = eigBlockVector[sizeX:]
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp
blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app
blockVectorP, blockVectorAP = pp, app
if B is not None:
aux = blockVectorBX * _lambda[np.newaxis, :]
else:
aux = blockVectorX * _lambda[np.newaxis, :]
blockVectorR = blockVectorAX - aux
aux = np.sum(blockVectorR.conj() * blockVectorR, 0)
residualNorms = np.sqrt(np.abs(aux))
# Use old lambda in case of early loop exit.
if retLambdaHistory:
lambdaHistory[iterationNumber + 1, :] = _lambda
if retResidualNormsHistory:
residualNormsHistory[iterationNumber + 1, :] = residualNorms
residualNorm = np.sum(np.abs(residualNorms)) / sizeX
if residualNorm < smallestResidualNorm:
smallestResidualNorm = residualNorm
bestIterationNumber = iterationNumber + 1
bestblockVectorX = blockVectorX
if np.max(np.abs(residualNorms)) > residualTolerance:
warnings.warn(
f"Exited at iteration {iterationNumber} with accuracies \n"
f"{residualNorms}\n"
f"not reaching the requested tolerance {residualTolerance}.\n"
f"Use iteration {bestIterationNumber} instead with accuracy \n"
f"{smallestResidualNorm}.\n",
UserWarning, stacklevel=2
)
if verbosityLevel:
print(f"Final iterative eigenvalue(s):\n{_lambda}")
print(f"Final iterative residual norm(s):\n{residualNorms}")
blockVectorX = bestblockVectorX
# Making eigenvectors "exactly" satisfy the blockVectorY constrains
if blockVectorY is not None:
_applyConstraints(blockVectorX,
gramYBY,
blockVectorBY,
blockVectorY)
# Making eigenvectors "exactly" othonormalized by final "exact" RR
blockVectorAX = A(blockVectorX)
if blockVectorAX.shape != blockVectorX.shape:
raise ValueError(
f"The shape {blockVectorX.shape} "
f"of the postprocessing iterate not preserved\n"
f"and changed to {blockVectorAX.shape} "
f"after multiplying by the primary matrix.\n"
)
gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX)
blockVectorBX = blockVectorX
if B is not None:
blockVectorBX = B(blockVectorX)
if blockVectorBX.shape != blockVectorX.shape:
raise ValueError(
f"The shape {blockVectorX.shape} "
f"of the postprocessing iterate not preserved\n"
f"and changed to {blockVectorBX.shape} "
f"after multiplying by the secondary matrix.\n"
)
gramXBX = np.dot(blockVectorX.T.conj(), blockVectorBX)
_handle_gramA_gramB_verbosity(gramXAX, gramXBX, verbosityLevel)
gramXAX = (gramXAX + gramXAX.T.conj()) / 2
gramXBX = (gramXBX + gramXBX.T.conj()) / 2
try:
_lambda, eigBlockVector = eigh(gramXAX,
gramXBX,
check_finite=False)
except LinAlgError as e:
raise ValueError("eigh has failed in lobpcg postprocessing") from e
ii = _get_indx(_lambda, sizeX, largest)
_lambda = _lambda[ii]
eigBlockVector = np.asarray(eigBlockVector[:, ii])
blockVectorX = np.dot(blockVectorX, eigBlockVector)
blockVectorAX = np.dot(blockVectorAX, eigBlockVector)
if B is not None:
blockVectorBX = np.dot(blockVectorBX, eigBlockVector)
aux = blockVectorBX * _lambda[np.newaxis, :]
else:
aux = blockVectorX * _lambda[np.newaxis, :]
blockVectorR = blockVectorAX - aux
aux = np.sum(blockVectorR.conj() * blockVectorR, 0)
residualNorms = np.sqrt(np.abs(aux))
if retLambdaHistory:
lambdaHistory[bestIterationNumber + 1, :] = _lambda
if retResidualNormsHistory:
residualNormsHistory[bestIterationNumber + 1, :] = residualNorms
if retLambdaHistory:
lambdaHistory = lambdaHistory[
: bestIterationNumber + 2, :]
if retResidualNormsHistory:
residualNormsHistory = residualNormsHistory[
: bestIterationNumber + 2, :]
if np.max(np.abs(residualNorms)) > residualTolerance:
warnings.warn(
f"Exited postprocessing with accuracies \n"
f"{residualNorms}\n"
f"not reaching the requested tolerance {residualTolerance}.",
UserWarning, stacklevel=2
)
if verbosityLevel:
print(f"Final postprocessing eigenvalue(s):\n{_lambda}")
print(f"Final residual norm(s):\n{residualNorms}")
if retLambdaHistory:
lambdaHistory = np.vsplit(lambdaHistory, np.shape(lambdaHistory)[0])
lambdaHistory = [np.squeeze(i) for i in lambdaHistory]
if retResidualNormsHistory:
residualNormsHistory = np.vsplit(residualNormsHistory,
np.shape(residualNormsHistory)[0])
residualNormsHistory = [np.squeeze(i) for i in residualNormsHistory]
if retLambdaHistory:
if retResidualNormsHistory:
return _lambda, blockVectorX, lambdaHistory, residualNormsHistory
else:
return _lambda, blockVectorX, lambdaHistory
else:
if retResidualNormsHistory:
return _lambda, blockVectorX, residualNormsHistory
else:
return _lambda, blockVectorX
|