File: test_feature_hasher.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (160 lines) | stat: -rw-r--r-- 5,038 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
from numpy.testing import assert_array_equal
import pytest

from sklearn.feature_extraction import FeatureHasher
from sklearn.feature_extraction._hashing_fast import transform as _hashing_transform


def test_feature_hasher_dicts():
    feature_hasher = FeatureHasher(n_features=16)
    assert "dict" == feature_hasher.input_type

    raw_X = [{"foo": "bar", "dada": 42, "tzara": 37}, {"foo": "baz", "gaga": "string1"}]
    X1 = FeatureHasher(n_features=16).transform(raw_X)
    gen = (iter(d.items()) for d in raw_X)
    X2 = FeatureHasher(n_features=16, input_type="pair").transform(gen)
    assert_array_equal(X1.toarray(), X2.toarray())


def test_feature_hasher_strings():
    # mix byte and Unicode strings; note that "foo" is a duplicate in row 0
    raw_X = [
        ["foo", "bar", "baz", "foo".encode("ascii")],
        ["bar".encode("ascii"), "baz", "quux"],
    ]

    for lg_n_features in (7, 9, 11, 16, 22):
        n_features = 2**lg_n_features

        it = (x for x in raw_X)  # iterable

        feature_hasher = FeatureHasher(
            n_features=n_features, input_type="string", alternate_sign=False
        )
        X = feature_hasher.transform(it)

        assert X.shape[0] == len(raw_X)
        assert X.shape[1] == n_features

        assert X[0].sum() == 4
        assert X[1].sum() == 3

        assert X.nnz == 6


@pytest.mark.parametrize(
    "raw_X",
    [
        ["my_string", "another_string"],
        (x for x in ["my_string", "another_string"]),
    ],
    ids=["list", "generator"],
)
def test_feature_hasher_single_string(raw_X):
    """FeatureHasher raises error when a sample is a single string.

    Non-regression test for gh-13199.
    """
    msg = "Samples can not be a single string"

    feature_hasher = FeatureHasher(n_features=10, input_type="string")
    with pytest.raises(ValueError, match=msg):
        feature_hasher.transform(raw_X)


def test_hashing_transform_seed():
    # check the influence of the seed when computing the hashes
    raw_X = [
        ["foo", "bar", "baz", "foo".encode("ascii")],
        ["bar".encode("ascii"), "baz", "quux"],
    ]

    raw_X_ = (((f, 1) for f in x) for x in raw_X)
    indices, indptr, _ = _hashing_transform(raw_X_, 2**7, str, False)

    raw_X_ = (((f, 1) for f in x) for x in raw_X)
    indices_0, indptr_0, _ = _hashing_transform(raw_X_, 2**7, str, False, seed=0)
    assert_array_equal(indices, indices_0)
    assert_array_equal(indptr, indptr_0)

    raw_X_ = (((f, 1) for f in x) for x in raw_X)
    indices_1, _, _ = _hashing_transform(raw_X_, 2**7, str, False, seed=1)
    with pytest.raises(AssertionError):
        assert_array_equal(indices, indices_1)


def test_feature_hasher_pairs():
    raw_X = (
        iter(d.items())
        for d in [{"foo": 1, "bar": 2}, {"baz": 3, "quux": 4, "foo": -1}]
    )
    feature_hasher = FeatureHasher(n_features=16, input_type="pair")
    x1, x2 = feature_hasher.transform(raw_X).toarray()
    x1_nz = sorted(np.abs(x1[x1 != 0]))
    x2_nz = sorted(np.abs(x2[x2 != 0]))
    assert [1, 2] == x1_nz
    assert [1, 3, 4] == x2_nz


def test_feature_hasher_pairs_with_string_values():
    raw_X = (
        iter(d.items())
        for d in [{"foo": 1, "bar": "a"}, {"baz": "abc", "quux": 4, "foo": -1}]
    )
    feature_hasher = FeatureHasher(n_features=16, input_type="pair")
    x1, x2 = feature_hasher.transform(raw_X).toarray()
    x1_nz = sorted(np.abs(x1[x1 != 0]))
    x2_nz = sorted(np.abs(x2[x2 != 0]))
    assert [1, 1] == x1_nz
    assert [1, 1, 4] == x2_nz

    raw_X = (iter(d.items()) for d in [{"bax": "abc"}, {"bax": "abc"}])
    x1, x2 = feature_hasher.transform(raw_X).toarray()
    x1_nz = np.abs(x1[x1 != 0])
    x2_nz = np.abs(x2[x2 != 0])
    assert [1] == x1_nz
    assert [1] == x2_nz
    assert_array_equal(x1, x2)


def test_hash_empty_input():
    n_features = 16
    raw_X = [[], (), iter(range(0))]

    feature_hasher = FeatureHasher(n_features=n_features, input_type="string")
    X = feature_hasher.transform(raw_X)

    assert_array_equal(X.A, np.zeros((len(raw_X), n_features)))


def test_hasher_zeros():
    # Assert that no zeros are materialized in the output.
    X = FeatureHasher().transform([{"foo": 0}])
    assert X.data.shape == (0,)


def test_hasher_alternate_sign():
    X = [list("Thequickbrownfoxjumped")]

    Xt = FeatureHasher(alternate_sign=True, input_type="string").fit_transform(X)
    assert Xt.data.min() < 0 and Xt.data.max() > 0

    Xt = FeatureHasher(alternate_sign=False, input_type="string").fit_transform(X)
    assert Xt.data.min() > 0


def test_hash_collisions():
    X = [list("Thequickbrownfoxjumped")]

    Xt = FeatureHasher(
        alternate_sign=True, n_features=1, input_type="string"
    ).fit_transform(X)
    # check that some of the hashed tokens are added
    # with an opposite sign and cancel out
    assert abs(Xt.data[0]) < len(X[0])

    Xt = FeatureHasher(
        alternate_sign=False, n_features=1, input_type="string"
    ).fit_transform(X)
    assert Xt.data[0] == len(X[0])