File: test_text.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (1647 lines) | stat: -rw-r--r-- 52,939 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
from collections.abc import Mapping
import re

import pytest
import warnings
from scipy import sparse

from sklearn.feature_extraction.text import strip_tags
from sklearn.feature_extraction.text import strip_accents_unicode
from sklearn.feature_extraction.text import strip_accents_ascii

from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS

from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC

from sklearn.base import clone

import numpy as np
from numpy.testing import assert_array_almost_equal
from numpy.testing import assert_array_equal
from sklearn.utils import IS_PYPY
from sklearn.utils._testing import (
    assert_almost_equal,
    fails_if_pypy,
    assert_allclose_dense_sparse,
    skip_if_32bit,
)
from collections import defaultdict
from functools import partial
import pickle
from io import StringIO

JUNK_FOOD_DOCS = (
    "the pizza pizza beer copyright",
    "the pizza burger beer copyright",
    "the the pizza beer beer copyright",
    "the burger beer beer copyright",
    "the coke burger coke copyright",
    "the coke burger burger",
)

NOTJUNK_FOOD_DOCS = (
    "the salad celeri copyright",
    "the salad salad sparkling water copyright",
    "the the celeri celeri copyright",
    "the tomato tomato salad water",
    "the tomato salad water copyright",
)

ALL_FOOD_DOCS = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS


def uppercase(s):
    return strip_accents_unicode(s).upper()


def strip_eacute(s):
    return s.replace("é", "e")


def split_tokenize(s):
    return s.split()


def lazy_analyze(s):
    return ["the_ultimate_feature"]


def test_strip_accents():
    # check some classical latin accentuated symbols
    a = "àáâãäåçèéêë"
    expected = "aaaaaaceeee"
    assert strip_accents_unicode(a) == expected

    a = "ìíîïñòóôõöùúûüý"
    expected = "iiiinooooouuuuy"
    assert strip_accents_unicode(a) == expected

    # check some arabic
    a = "\u0625"  # alef with a hamza below: إ
    expected = "\u0627"  # simple alef: ا
    assert strip_accents_unicode(a) == expected

    # mix letters accentuated and not
    a = "this is à test"
    expected = "this is a test"
    assert strip_accents_unicode(a) == expected

    # strings that are already decomposed
    a = "o\u0308"  # o with diaeresis
    expected = "o"
    assert strip_accents_unicode(a) == expected

    # combining marks by themselves
    a = "\u0300\u0301\u0302\u0303"
    expected = ""
    assert strip_accents_unicode(a) == expected

    # Multiple combining marks on one character
    a = "o\u0308\u0304"
    expected = "o"
    assert strip_accents_unicode(a) == expected


def test_to_ascii():
    # check some classical latin accentuated symbols
    a = "àáâãäåçèéêë"
    expected = "aaaaaaceeee"
    assert strip_accents_ascii(a) == expected

    a = "ìíîïñòóôõöùúûüý"
    expected = "iiiinooooouuuuy"
    assert strip_accents_ascii(a) == expected

    # check some arabic
    a = "\u0625"  # halef with a hamza below
    expected = ""  # halef has no direct ascii match
    assert strip_accents_ascii(a) == expected

    # mix letters accentuated and not
    a = "this is à test"
    expected = "this is a test"
    assert strip_accents_ascii(a) == expected


@pytest.mark.parametrize("Vectorizer", (CountVectorizer, HashingVectorizer))
def test_word_analyzer_unigrams(Vectorizer):
    wa = Vectorizer(strip_accents="ascii").build_analyzer()
    text = "J'ai mangé du kangourou  ce midi, c'était pas très bon."
    expected = [
        "ai",
        "mange",
        "du",
        "kangourou",
        "ce",
        "midi",
        "etait",
        "pas",
        "tres",
        "bon",
    ]
    assert wa(text) == expected

    text = "This is a test, really.\n\n I met Harry yesterday."
    expected = ["this", "is", "test", "really", "met", "harry", "yesterday"]
    assert wa(text) == expected

    wa = Vectorizer(input="file").build_analyzer()
    text = StringIO("This is a test with a file-like object!")
    expected = ["this", "is", "test", "with", "file", "like", "object"]
    assert wa(text) == expected

    # with custom preprocessor
    wa = Vectorizer(preprocessor=uppercase).build_analyzer()
    text = "J'ai mangé du kangourou  ce midi,  c'était pas très bon."
    expected = [
        "AI",
        "MANGE",
        "DU",
        "KANGOUROU",
        "CE",
        "MIDI",
        "ETAIT",
        "PAS",
        "TRES",
        "BON",
    ]
    assert wa(text) == expected

    # with custom tokenizer
    wa = Vectorizer(tokenizer=split_tokenize, strip_accents="ascii").build_analyzer()
    text = "J'ai mangé du kangourou  ce midi, c'était pas très bon."
    expected = [
        "j'ai",
        "mange",
        "du",
        "kangourou",
        "ce",
        "midi,",
        "c'etait",
        "pas",
        "tres",
        "bon.",
    ]
    assert wa(text) == expected


def test_word_analyzer_unigrams_and_bigrams():
    wa = CountVectorizer(
        analyzer="word", strip_accents="unicode", ngram_range=(1, 2)
    ).build_analyzer()

    text = "J'ai mangé du kangourou  ce midi, c'était pas très bon."
    expected = [
        "ai",
        "mange",
        "du",
        "kangourou",
        "ce",
        "midi",
        "etait",
        "pas",
        "tres",
        "bon",
        "ai mange",
        "mange du",
        "du kangourou",
        "kangourou ce",
        "ce midi",
        "midi etait",
        "etait pas",
        "pas tres",
        "tres bon",
    ]
    assert wa(text) == expected


def test_unicode_decode_error():
    # decode_error default to strict, so this should fail
    # First, encode (as bytes) a unicode string.
    text = "J'ai mangé du kangourou  ce midi, c'était pas très bon."
    text_bytes = text.encode("utf-8")

    # Then let the Analyzer try to decode it as ascii. It should fail,
    # because we have given it an incorrect encoding.
    wa = CountVectorizer(ngram_range=(1, 2), encoding="ascii").build_analyzer()
    with pytest.raises(UnicodeDecodeError):
        wa(text_bytes)

    ca = CountVectorizer(
        analyzer="char", ngram_range=(3, 6), encoding="ascii"
    ).build_analyzer()
    with pytest.raises(UnicodeDecodeError):
        ca(text_bytes)


def test_char_ngram_analyzer():
    cnga = CountVectorizer(
        analyzer="char", strip_accents="unicode", ngram_range=(3, 6)
    ).build_analyzer()

    text = "J'ai mangé du kangourou  ce midi, c'était pas très bon"
    expected = ["j'a", "'ai", "ai ", "i m", " ma"]
    assert cnga(text)[:5] == expected
    expected = ["s tres", " tres ", "tres b", "res bo", "es bon"]
    assert cnga(text)[-5:] == expected

    text = "This \n\tis a test, really.\n\n I met Harry yesterday"
    expected = ["thi", "his", "is ", "s i", " is"]
    assert cnga(text)[:5] == expected

    expected = [" yeste", "yester", "esterd", "sterda", "terday"]
    assert cnga(text)[-5:] == expected

    cnga = CountVectorizer(
        input="file", analyzer="char", ngram_range=(3, 6)
    ).build_analyzer()
    text = StringIO("This is a test with a file-like object!")
    expected = ["thi", "his", "is ", "s i", " is"]
    assert cnga(text)[:5] == expected


def test_char_wb_ngram_analyzer():
    cnga = CountVectorizer(
        analyzer="char_wb", strip_accents="unicode", ngram_range=(3, 6)
    ).build_analyzer()

    text = "This \n\tis a test, really.\n\n I met Harry yesterday"
    expected = [" th", "thi", "his", "is ", " thi"]
    assert cnga(text)[:5] == expected

    expected = ["yester", "esterd", "sterda", "terday", "erday "]
    assert cnga(text)[-5:] == expected

    cnga = CountVectorizer(
        input="file", analyzer="char_wb", ngram_range=(3, 6)
    ).build_analyzer()
    text = StringIO("A test with a file-like object!")
    expected = [" a ", " te", "tes", "est", "st ", " tes"]
    assert cnga(text)[:6] == expected


def test_word_ngram_analyzer():
    cnga = CountVectorizer(
        analyzer="word", strip_accents="unicode", ngram_range=(3, 6)
    ).build_analyzer()

    text = "This \n\tis a test, really.\n\n I met Harry yesterday"
    expected = ["this is test", "is test really", "test really met"]
    assert cnga(text)[:3] == expected

    expected = [
        "test really met harry yesterday",
        "this is test really met harry",
        "is test really met harry yesterday",
    ]
    assert cnga(text)[-3:] == expected

    cnga_file = CountVectorizer(
        input="file", analyzer="word", ngram_range=(3, 6)
    ).build_analyzer()
    file = StringIO(text)
    assert cnga_file(file) == cnga(text)


def test_countvectorizer_custom_vocabulary():
    vocab = {"pizza": 0, "beer": 1}
    terms = set(vocab.keys())

    # Try a few of the supported types.
    for typ in [dict, list, iter, partial(defaultdict, int)]:
        v = typ(vocab)
        vect = CountVectorizer(vocabulary=v)
        vect.fit(JUNK_FOOD_DOCS)
        if isinstance(v, Mapping):
            assert vect.vocabulary_ == vocab
        else:
            assert set(vect.vocabulary_) == terms
        X = vect.transform(JUNK_FOOD_DOCS)
        assert X.shape[1] == len(terms)
        v = typ(vocab)
        vect = CountVectorizer(vocabulary=v)
        inv = vect.inverse_transform(X)
        assert len(inv) == X.shape[0]


def test_countvectorizer_custom_vocabulary_pipeline():
    what_we_like = ["pizza", "beer"]
    pipe = Pipeline(
        [
            ("count", CountVectorizer(vocabulary=what_we_like)),
            ("tfidf", TfidfTransformer()),
        ]
    )
    X = pipe.fit_transform(ALL_FOOD_DOCS)
    assert set(pipe.named_steps["count"].vocabulary_) == set(what_we_like)
    assert X.shape[1] == len(what_we_like)


def test_countvectorizer_custom_vocabulary_repeated_indices():
    vocab = {"pizza": 0, "beer": 0}
    msg = "Vocabulary contains repeated indices"
    with pytest.raises(ValueError, match=msg):
        vect = CountVectorizer(vocabulary=vocab)
        vect.fit(["pasta_siziliana"])


def test_countvectorizer_custom_vocabulary_gap_index():
    vocab = {"pizza": 1, "beer": 2}
    with pytest.raises(ValueError, match="doesn't contain index"):
        vect = CountVectorizer(vocabulary=vocab)
        vect.fit(["pasta_verdura"])


def test_countvectorizer_stop_words():
    cv = CountVectorizer()
    cv.set_params(stop_words="english")
    assert cv.get_stop_words() == ENGLISH_STOP_WORDS
    cv.set_params(stop_words="_bad_str_stop_")
    with pytest.raises(ValueError):
        cv.get_stop_words()
    cv.set_params(stop_words="_bad_unicode_stop_")
    with pytest.raises(ValueError):
        cv.get_stop_words()
    stoplist = ["some", "other", "words"]
    cv.set_params(stop_words=stoplist)
    assert cv.get_stop_words() == set(stoplist)


def test_countvectorizer_empty_vocabulary():
    with pytest.raises(ValueError, match="empty vocabulary"):
        vect = CountVectorizer(vocabulary=[])
        vect.fit(["foo"])

    with pytest.raises(ValueError, match="empty vocabulary"):
        v = CountVectorizer(max_df=1.0, stop_words="english")
        # fit on stopwords only
        v.fit(["to be or not to be", "and me too", "and so do you"])


def test_fit_countvectorizer_twice():
    cv = CountVectorizer()
    X1 = cv.fit_transform(ALL_FOOD_DOCS[:5])
    X2 = cv.fit_transform(ALL_FOOD_DOCS[5:])
    assert X1.shape[1] != X2.shape[1]


def test_countvectorizer_custom_token_pattern():
    """Check `get_feature_names_out()` when a custom token pattern is passed.
    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/12971
    """
    corpus = [
        "This is the 1st document in my corpus.",
        "This document is the 2nd sample.",
        "And this is the 3rd one.",
        "Is this the 4th document?",
    ]
    token_pattern = r"[0-9]{1,3}(?:st|nd|rd|th)\s\b(\w{2,})\b"
    vectorizer = CountVectorizer(token_pattern=token_pattern)
    vectorizer.fit_transform(corpus)
    expected = ["document", "one", "sample"]
    feature_names_out = vectorizer.get_feature_names_out()
    assert_array_equal(feature_names_out, expected)


def test_countvectorizer_custom_token_pattern_with_several_group():
    """Check that we raise an error if token pattern capture several groups.
    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/12971
    """
    corpus = [
        "This is the 1st document in my corpus.",
        "This document is the 2nd sample.",
        "And this is the 3rd one.",
        "Is this the 4th document?",
    ]

    token_pattern = r"([0-9]{1,3}(?:st|nd|rd|th))\s\b(\w{2,})\b"
    err_msg = "More than 1 capturing group in token pattern"
    vectorizer = CountVectorizer(token_pattern=token_pattern)
    with pytest.raises(ValueError, match=err_msg):
        vectorizer.fit(corpus)


def test_countvectorizer_uppercase_in_vocab():
    # Check that the check for uppercase in the provided vocabulary is only done at fit
    # time and not at transform time (#21251)
    vocabulary = ["Sample", "Upper", "Case", "Vocabulary"]
    message = (
        "Upper case characters found in"
        " vocabulary while 'lowercase'"
        " is True. These entries will not"
        " be matched with any documents"
    )

    vectorizer = CountVectorizer(lowercase=True, vocabulary=vocabulary)

    with pytest.warns(UserWarning, match=message):
        vectorizer.fit(vocabulary)

    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        vectorizer.transform(vocabulary)


def test_tf_transformer_feature_names_out():
    """Check get_feature_names_out for TfidfTransformer"""
    X = [[1, 1, 1], [1, 1, 0], [1, 0, 0]]
    tr = TfidfTransformer(smooth_idf=True, norm="l2").fit(X)

    feature_names_in = ["a", "c", "b"]
    feature_names_out = tr.get_feature_names_out(feature_names_in)
    assert_array_equal(feature_names_in, feature_names_out)


def test_tf_idf_smoothing():
    X = [[1, 1, 1], [1, 1, 0], [1, 0, 0]]
    tr = TfidfTransformer(smooth_idf=True, norm="l2")
    tfidf = tr.fit_transform(X).toarray()
    assert (tfidf >= 0).all()

    # check normalization
    assert_array_almost_equal((tfidf**2).sum(axis=1), [1.0, 1.0, 1.0])

    # this is robust to features with only zeros
    X = [[1, 1, 0], [1, 1, 0], [1, 0, 0]]
    tr = TfidfTransformer(smooth_idf=True, norm="l2")
    tfidf = tr.fit_transform(X).toarray()
    assert (tfidf >= 0).all()


def test_tfidf_no_smoothing():
    X = [[1, 1, 1], [1, 1, 0], [1, 0, 0]]
    tr = TfidfTransformer(smooth_idf=False, norm="l2")
    tfidf = tr.fit_transform(X).toarray()
    assert (tfidf >= 0).all()

    # check normalization
    assert_array_almost_equal((tfidf**2).sum(axis=1), [1.0, 1.0, 1.0])

    # the lack of smoothing make IDF fragile in the presence of feature with
    # only zeros
    X = [[1, 1, 0], [1, 1, 0], [1, 0, 0]]
    tr = TfidfTransformer(smooth_idf=False, norm="l2")

    in_warning_message = "divide by zero"
    with pytest.warns(RuntimeWarning, match=in_warning_message):
        tr.fit_transform(X).toarray()


def test_sublinear_tf():
    X = [[1], [2], [3]]
    tr = TfidfTransformer(sublinear_tf=True, use_idf=False, norm=None)
    tfidf = tr.fit_transform(X).toarray()
    assert tfidf[0] == 1
    assert tfidf[1] > tfidf[0]
    assert tfidf[2] > tfidf[1]
    assert tfidf[1] < 2
    assert tfidf[2] < 3


def test_vectorizer():
    # raw documents as an iterator
    train_data = iter(ALL_FOOD_DOCS[:-1])
    test_data = [ALL_FOOD_DOCS[-1]]
    n_train = len(ALL_FOOD_DOCS) - 1

    # test without vocabulary
    v1 = CountVectorizer(max_df=0.5)
    counts_train = v1.fit_transform(train_data)
    if hasattr(counts_train, "tocsr"):
        counts_train = counts_train.tocsr()
    assert counts_train[0, v1.vocabulary_["pizza"]] == 2

    # build a vectorizer v1 with the same vocabulary as the one fitted by v1
    v2 = CountVectorizer(vocabulary=v1.vocabulary_)

    # compare that the two vectorizer give the same output on the test sample
    for v in (v1, v2):
        counts_test = v.transform(test_data)
        if hasattr(counts_test, "tocsr"):
            counts_test = counts_test.tocsr()

        vocabulary = v.vocabulary_
        assert counts_test[0, vocabulary["salad"]] == 1
        assert counts_test[0, vocabulary["tomato"]] == 1
        assert counts_test[0, vocabulary["water"]] == 1

        # stop word from the fixed list
        assert "the" not in vocabulary

        # stop word found automatically by the vectorizer DF thresholding
        # words that are high frequent across the complete corpus are likely
        # to be not informative (either real stop words of extraction
        # artifacts)
        assert "copyright" not in vocabulary

        # not present in the sample
        assert counts_test[0, vocabulary["coke"]] == 0
        assert counts_test[0, vocabulary["burger"]] == 0
        assert counts_test[0, vocabulary["beer"]] == 0
        assert counts_test[0, vocabulary["pizza"]] == 0

    # test tf-idf
    t1 = TfidfTransformer(norm="l1")
    tfidf = t1.fit(counts_train).transform(counts_train).toarray()
    assert len(t1.idf_) == len(v1.vocabulary_)
    assert tfidf.shape == (n_train, len(v1.vocabulary_))

    # test tf-idf with new data
    tfidf_test = t1.transform(counts_test).toarray()
    assert tfidf_test.shape == (len(test_data), len(v1.vocabulary_))

    # test tf alone
    t2 = TfidfTransformer(norm="l1", use_idf=False)
    tf = t2.fit(counts_train).transform(counts_train).toarray()
    assert not hasattr(t2, "idf_")

    # test idf transform with unlearned idf vector
    t3 = TfidfTransformer(use_idf=True)
    with pytest.raises(ValueError):
        t3.transform(counts_train)

    # L1-normalized term frequencies sum to one
    assert_array_almost_equal(np.sum(tf, axis=1), [1.0] * n_train)

    # test the direct tfidf vectorizer
    # (equivalent to term count vectorizer + tfidf transformer)
    train_data = iter(ALL_FOOD_DOCS[:-1])
    tv = TfidfVectorizer(norm="l1")

    tv.max_df = v1.max_df
    tfidf2 = tv.fit_transform(train_data).toarray()
    assert not tv.fixed_vocabulary_
    assert_array_almost_equal(tfidf, tfidf2)

    # test the direct tfidf vectorizer with new data
    tfidf_test2 = tv.transform(test_data).toarray()
    assert_array_almost_equal(tfidf_test, tfidf_test2)

    # test transform on unfitted vectorizer with empty vocabulary
    v3 = CountVectorizer(vocabulary=None)
    with pytest.raises(ValueError):
        v3.transform(train_data)

    # ascii preprocessor?
    v3.set_params(strip_accents="ascii", lowercase=False)
    processor = v3.build_preprocessor()
    text = "J'ai mangé du kangourou  ce midi, c'était pas très bon."
    expected = strip_accents_ascii(text)
    result = processor(text)
    assert expected == result

    # error on bad strip_accents param
    v3.set_params(strip_accents="_gabbledegook_", preprocessor=None)
    with pytest.raises(ValueError):
        v3.build_preprocessor()

    # error with bad analyzer type
    v3.set_params = "_invalid_analyzer_type_"
    with pytest.raises(ValueError):
        v3.build_analyzer()


def test_tfidf_vectorizer_setters():
    norm, use_idf, smooth_idf, sublinear_tf = "l2", False, False, False
    tv = TfidfVectorizer(
        norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf
    )
    tv.fit(JUNK_FOOD_DOCS)
    assert tv._tfidf.norm == norm
    assert tv._tfidf.use_idf == use_idf
    assert tv._tfidf.smooth_idf == smooth_idf
    assert tv._tfidf.sublinear_tf == sublinear_tf

    # assigning value to `TfidfTransformer` should not have any effect until
    # fitting
    tv.norm = "l1"
    tv.use_idf = True
    tv.smooth_idf = True
    tv.sublinear_tf = True
    assert tv._tfidf.norm == norm
    assert tv._tfidf.use_idf == use_idf
    assert tv._tfidf.smooth_idf == smooth_idf
    assert tv._tfidf.sublinear_tf == sublinear_tf

    tv.fit(JUNK_FOOD_DOCS)
    assert tv._tfidf.norm == tv.norm
    assert tv._tfidf.use_idf == tv.use_idf
    assert tv._tfidf.smooth_idf == tv.smooth_idf
    assert tv._tfidf.sublinear_tf == tv.sublinear_tf


@fails_if_pypy
def test_hashing_vectorizer():
    v = HashingVectorizer()
    X = v.transform(ALL_FOOD_DOCS)
    token_nnz = X.nnz
    assert X.shape == (len(ALL_FOOD_DOCS), v.n_features)
    assert X.dtype == v.dtype

    # By default the hashed values receive a random sign and l2 normalization
    # makes the feature values bounded
    assert np.min(X.data) > -1
    assert np.min(X.data) < 0
    assert np.max(X.data) > 0
    assert np.max(X.data) < 1

    # Check that the rows are normalized
    for i in range(X.shape[0]):
        assert_almost_equal(np.linalg.norm(X[0].data, 2), 1.0)

    # Check vectorization with some non-default parameters
    v = HashingVectorizer(ngram_range=(1, 2), norm="l1")
    X = v.transform(ALL_FOOD_DOCS)
    assert X.shape == (len(ALL_FOOD_DOCS), v.n_features)
    assert X.dtype == v.dtype

    # ngrams generate more non zeros
    ngrams_nnz = X.nnz
    assert ngrams_nnz > token_nnz
    assert ngrams_nnz < 2 * token_nnz

    # makes the feature values bounded
    assert np.min(X.data) > -1
    assert np.max(X.data) < 1

    # Check that the rows are normalized
    for i in range(X.shape[0]):
        assert_almost_equal(np.linalg.norm(X[0].data, 1), 1.0)


def test_feature_names():
    cv = CountVectorizer(max_df=0.5)

    # test for Value error on unfitted/empty vocabulary
    with pytest.raises(ValueError):
        cv.get_feature_names_out()
    assert not cv.fixed_vocabulary_

    # test for vocabulary learned from data
    X = cv.fit_transform(ALL_FOOD_DOCS)
    n_samples, n_features = X.shape
    assert len(cv.vocabulary_) == n_features

    feature_names = cv.get_feature_names_out()
    assert isinstance(feature_names, np.ndarray)
    assert feature_names.dtype == object

    assert len(feature_names) == n_features
    assert_array_equal(
        [
            "beer",
            "burger",
            "celeri",
            "coke",
            "pizza",
            "salad",
            "sparkling",
            "tomato",
            "water",
        ],
        feature_names,
    )

    for idx, name in enumerate(feature_names):
        assert idx == cv.vocabulary_.get(name)

    # test for custom vocabulary
    vocab = [
        "beer",
        "burger",
        "celeri",
        "coke",
        "pizza",
        "salad",
        "sparkling",
        "tomato",
        "water",
    ]

    cv = CountVectorizer(vocabulary=vocab)
    feature_names = cv.get_feature_names_out()
    assert_array_equal(
        [
            "beer",
            "burger",
            "celeri",
            "coke",
            "pizza",
            "salad",
            "sparkling",
            "tomato",
            "water",
        ],
        feature_names,
    )
    assert cv.fixed_vocabulary_

    for idx, name in enumerate(feature_names):
        assert idx == cv.vocabulary_.get(name)


@pytest.mark.parametrize("Vectorizer", (CountVectorizer, TfidfVectorizer))
def test_vectorizer_max_features(Vectorizer):
    expected_vocabulary = {"burger", "beer", "salad", "pizza"}
    expected_stop_words = {
        "celeri",
        "tomato",
        "copyright",
        "coke",
        "sparkling",
        "water",
        "the",
    }

    # test bounded number of extracted features
    vectorizer = Vectorizer(max_df=0.6, max_features=4)
    vectorizer.fit(ALL_FOOD_DOCS)
    assert set(vectorizer.vocabulary_) == expected_vocabulary
    assert vectorizer.stop_words_ == expected_stop_words


def test_count_vectorizer_max_features():
    # Regression test: max_features didn't work correctly in 0.14.

    cv_1 = CountVectorizer(max_features=1)
    cv_3 = CountVectorizer(max_features=3)
    cv_None = CountVectorizer(max_features=None)

    counts_1 = cv_1.fit_transform(JUNK_FOOD_DOCS).sum(axis=0)
    counts_3 = cv_3.fit_transform(JUNK_FOOD_DOCS).sum(axis=0)
    counts_None = cv_None.fit_transform(JUNK_FOOD_DOCS).sum(axis=0)

    features_1 = cv_1.get_feature_names_out()
    features_3 = cv_3.get_feature_names_out()
    features_None = cv_None.get_feature_names_out()

    # The most common feature is "the", with frequency 7.
    assert 7 == counts_1.max()
    assert 7 == counts_3.max()
    assert 7 == counts_None.max()

    # The most common feature should be the same
    assert "the" == features_1[np.argmax(counts_1)]
    assert "the" == features_3[np.argmax(counts_3)]
    assert "the" == features_None[np.argmax(counts_None)]


def test_vectorizer_max_df():
    test_data = ["abc", "dea", "eat"]
    vect = CountVectorizer(analyzer="char", max_df=1.0)
    vect.fit(test_data)
    assert "a" in vect.vocabulary_.keys()
    assert len(vect.vocabulary_.keys()) == 6
    assert len(vect.stop_words_) == 0

    vect.max_df = 0.5  # 0.5 * 3 documents -> max_doc_count == 1.5
    vect.fit(test_data)
    assert "a" not in vect.vocabulary_.keys()  # {ae} ignored
    assert len(vect.vocabulary_.keys()) == 4  # {bcdt} remain
    assert "a" in vect.stop_words_
    assert len(vect.stop_words_) == 2

    vect.max_df = 1
    vect.fit(test_data)
    assert "a" not in vect.vocabulary_.keys()  # {ae} ignored
    assert len(vect.vocabulary_.keys()) == 4  # {bcdt} remain
    assert "a" in vect.stop_words_
    assert len(vect.stop_words_) == 2


def test_vectorizer_min_df():
    test_data = ["abc", "dea", "eat"]
    vect = CountVectorizer(analyzer="char", min_df=1)
    vect.fit(test_data)
    assert "a" in vect.vocabulary_.keys()
    assert len(vect.vocabulary_.keys()) == 6
    assert len(vect.stop_words_) == 0

    vect.min_df = 2
    vect.fit(test_data)
    assert "c" not in vect.vocabulary_.keys()  # {bcdt} ignored
    assert len(vect.vocabulary_.keys()) == 2  # {ae} remain
    assert "c" in vect.stop_words_
    assert len(vect.stop_words_) == 4

    vect.min_df = 0.8  # 0.8 * 3 documents -> min_doc_count == 2.4
    vect.fit(test_data)
    assert "c" not in vect.vocabulary_.keys()  # {bcdet} ignored
    assert len(vect.vocabulary_.keys()) == 1  # {a} remains
    assert "c" in vect.stop_words_
    assert len(vect.stop_words_) == 5


def test_count_binary_occurrences():
    # by default multiple occurrences are counted as longs
    test_data = ["aaabc", "abbde"]
    vect = CountVectorizer(analyzer="char", max_df=1.0)
    X = vect.fit_transform(test_data).toarray()
    assert_array_equal(["a", "b", "c", "d", "e"], vect.get_feature_names_out())
    assert_array_equal([[3, 1, 1, 0, 0], [1, 2, 0, 1, 1]], X)

    # using boolean features, we can fetch the binary occurrence info
    # instead.
    vect = CountVectorizer(analyzer="char", max_df=1.0, binary=True)
    X = vect.fit_transform(test_data).toarray()
    assert_array_equal([[1, 1, 1, 0, 0], [1, 1, 0, 1, 1]], X)

    # check the ability to change the dtype
    vect = CountVectorizer(analyzer="char", max_df=1.0, binary=True, dtype=np.float32)
    X_sparse = vect.fit_transform(test_data)
    assert X_sparse.dtype == np.float32


@fails_if_pypy
def test_hashed_binary_occurrences():
    # by default multiple occurrences are counted as longs
    test_data = ["aaabc", "abbde"]
    vect = HashingVectorizer(alternate_sign=False, analyzer="char", norm=None)
    X = vect.transform(test_data)
    assert np.max(X[0:1].data) == 3
    assert np.max(X[1:2].data) == 2
    assert X.dtype == np.float64

    # using boolean features, we can fetch the binary occurrence info
    # instead.
    vect = HashingVectorizer(
        analyzer="char", alternate_sign=False, binary=True, norm=None
    )
    X = vect.transform(test_data)
    assert np.max(X.data) == 1
    assert X.dtype == np.float64

    # check the ability to change the dtype
    vect = HashingVectorizer(
        analyzer="char", alternate_sign=False, binary=True, norm=None, dtype=np.float64
    )
    X = vect.transform(test_data)
    assert X.dtype == np.float64


@pytest.mark.parametrize("Vectorizer", (CountVectorizer, TfidfVectorizer))
def test_vectorizer_inverse_transform(Vectorizer):
    # raw documents
    data = ALL_FOOD_DOCS
    vectorizer = Vectorizer()
    transformed_data = vectorizer.fit_transform(data)
    inversed_data = vectorizer.inverse_transform(transformed_data)
    assert isinstance(inversed_data, list)

    analyze = vectorizer.build_analyzer()
    for doc, inversed_terms in zip(data, inversed_data):
        terms = np.sort(np.unique(analyze(doc)))
        inversed_terms = np.sort(np.unique(inversed_terms))
        assert_array_equal(terms, inversed_terms)

    assert sparse.issparse(transformed_data)
    assert transformed_data.format == "csr"

    # Test that inverse_transform also works with numpy arrays and
    # scipy
    transformed_data2 = transformed_data.toarray()
    inversed_data2 = vectorizer.inverse_transform(transformed_data2)
    for terms, terms2 in zip(inversed_data, inversed_data2):
        assert_array_equal(np.sort(terms), np.sort(terms2))

    # Check that inverse_transform also works on non CSR sparse data:
    transformed_data3 = transformed_data.tocsc()
    inversed_data3 = vectorizer.inverse_transform(transformed_data3)
    for terms, terms3 in zip(inversed_data, inversed_data3):
        assert_array_equal(np.sort(terms), np.sort(terms3))


def test_count_vectorizer_pipeline_grid_selection():
    # raw documents
    data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS

    # label junk food as -1, the others as +1
    target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS)

    # split the dataset for model development and final evaluation
    train_data, test_data, target_train, target_test = train_test_split(
        data, target, test_size=0.2, random_state=0
    )

    pipeline = Pipeline([("vect", CountVectorizer()), ("svc", LinearSVC())])

    parameters = {
        "vect__ngram_range": [(1, 1), (1, 2)],
        "svc__loss": ("hinge", "squared_hinge"),
    }

    # find the best parameters for both the feature extraction and the
    # classifier
    grid_search = GridSearchCV(pipeline, parameters, n_jobs=1, cv=3)

    # Check that the best model found by grid search is 100% correct on the
    # held out evaluation set.
    pred = grid_search.fit(train_data, target_train).predict(test_data)
    assert_array_equal(pred, target_test)

    # on this toy dataset bigram representation which is used in the last of
    # the grid_search is considered the best estimator since they all converge
    # to 100% accuracy models
    assert grid_search.best_score_ == 1.0
    best_vectorizer = grid_search.best_estimator_.named_steps["vect"]
    assert best_vectorizer.ngram_range == (1, 1)


def test_vectorizer_pipeline_grid_selection():
    # raw documents
    data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS

    # label junk food as -1, the others as +1
    target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS)

    # split the dataset for model development and final evaluation
    train_data, test_data, target_train, target_test = train_test_split(
        data, target, test_size=0.1, random_state=0
    )

    pipeline = Pipeline([("vect", TfidfVectorizer()), ("svc", LinearSVC())])

    parameters = {
        "vect__ngram_range": [(1, 1), (1, 2)],
        "vect__norm": ("l1", "l2"),
        "svc__loss": ("hinge", "squared_hinge"),
    }

    # find the best parameters for both the feature extraction and the
    # classifier
    grid_search = GridSearchCV(pipeline, parameters, n_jobs=1)

    # Check that the best model found by grid search is 100% correct on the
    # held out evaluation set.
    pred = grid_search.fit(train_data, target_train).predict(test_data)
    assert_array_equal(pred, target_test)

    # on this toy dataset bigram representation which is used in the last of
    # the grid_search is considered the best estimator since they all converge
    # to 100% accuracy models
    assert grid_search.best_score_ == 1.0
    best_vectorizer = grid_search.best_estimator_.named_steps["vect"]
    assert best_vectorizer.ngram_range == (1, 1)
    assert best_vectorizer.norm == "l2"
    assert not best_vectorizer.fixed_vocabulary_


def test_vectorizer_pipeline_cross_validation():
    # raw documents
    data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS

    # label junk food as -1, the others as +1
    target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS)

    pipeline = Pipeline([("vect", TfidfVectorizer()), ("svc", LinearSVC())])

    cv_scores = cross_val_score(pipeline, data, target, cv=3)
    assert_array_equal(cv_scores, [1.0, 1.0, 1.0])


@fails_if_pypy
def test_vectorizer_unicode():
    # tests that the count vectorizer works with cyrillic.
    document = (
        "Машинное обучение — обширный подраздел искусственного "
        "интеллекта, изучающий методы построения алгоритмов, "
        "способных обучаться."
    )

    vect = CountVectorizer()
    X_counted = vect.fit_transform([document])
    assert X_counted.shape == (1, 12)

    vect = HashingVectorizer(norm=None, alternate_sign=False)
    X_hashed = vect.transform([document])
    assert X_hashed.shape == (1, 2**20)

    # No collisions on such a small dataset
    assert X_counted.nnz == X_hashed.nnz

    # When norm is None and not alternate_sign, the tokens are counted up to
    # collisions
    assert_array_equal(np.sort(X_counted.data), np.sort(X_hashed.data))


def test_tfidf_vectorizer_with_fixed_vocabulary():
    # non regression smoke test for inheritance issues
    vocabulary = ["pizza", "celeri"]
    vect = TfidfVectorizer(vocabulary=vocabulary)
    X_1 = vect.fit_transform(ALL_FOOD_DOCS)
    X_2 = vect.transform(ALL_FOOD_DOCS)
    assert_array_almost_equal(X_1.toarray(), X_2.toarray())
    assert vect.fixed_vocabulary_


def test_pickling_vectorizer():
    instances = [
        HashingVectorizer(),
        HashingVectorizer(norm="l1"),
        HashingVectorizer(binary=True),
        HashingVectorizer(ngram_range=(1, 2)),
        CountVectorizer(),
        CountVectorizer(preprocessor=strip_tags),
        CountVectorizer(analyzer=lazy_analyze),
        CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS),
        CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS),
        TfidfVectorizer(),
        TfidfVectorizer(analyzer=lazy_analyze),
        TfidfVectorizer().fit(JUNK_FOOD_DOCS),
    ]

    for orig in instances:
        s = pickle.dumps(orig)
        copy = pickle.loads(s)
        assert type(copy) == orig.__class__
        assert copy.get_params() == orig.get_params()
        if IS_PYPY and isinstance(orig, HashingVectorizer):
            continue
        else:
            assert_allclose_dense_sparse(
                copy.fit_transform(JUNK_FOOD_DOCS),
                orig.fit_transform(JUNK_FOOD_DOCS),
            )


@pytest.mark.parametrize(
    "factory",
    [
        CountVectorizer.build_analyzer,
        CountVectorizer.build_preprocessor,
        CountVectorizer.build_tokenizer,
    ],
)
def test_pickling_built_processors(factory):
    """Tokenizers cannot be pickled
    https://github.com/scikit-learn/scikit-learn/issues/12833
    """
    vec = CountVectorizer()
    function = factory(vec)
    text = "J'ai mangé du kangourou  ce midi, c'était pas très bon."
    roundtripped_function = pickle.loads(pickle.dumps(function))
    expected = function(text)
    result = roundtripped_function(text)
    assert result == expected


def test_countvectorizer_vocab_sets_when_pickling():
    # ensure that vocabulary of type set is coerced to a list to
    # preserve iteration ordering after deserialization
    rng = np.random.RandomState(0)
    vocab_words = np.array(
        [
            "beer",
            "burger",
            "celeri",
            "coke",
            "pizza",
            "salad",
            "sparkling",
            "tomato",
            "water",
        ]
    )
    for x in range(0, 100):
        vocab_set = set(rng.choice(vocab_words, size=5, replace=False))
        cv = CountVectorizer(vocabulary=vocab_set)
        unpickled_cv = pickle.loads(pickle.dumps(cv))
        cv.fit(ALL_FOOD_DOCS)
        unpickled_cv.fit(ALL_FOOD_DOCS)
        assert_array_equal(
            cv.get_feature_names_out(), unpickled_cv.get_feature_names_out()
        )


def test_countvectorizer_vocab_dicts_when_pickling():
    rng = np.random.RandomState(0)
    vocab_words = np.array(
        [
            "beer",
            "burger",
            "celeri",
            "coke",
            "pizza",
            "salad",
            "sparkling",
            "tomato",
            "water",
        ]
    )
    for x in range(0, 100):
        vocab_dict = dict()
        words = rng.choice(vocab_words, size=5, replace=False)
        for y in range(0, 5):
            vocab_dict[words[y]] = y
        cv = CountVectorizer(vocabulary=vocab_dict)
        unpickled_cv = pickle.loads(pickle.dumps(cv))
        cv.fit(ALL_FOOD_DOCS)
        unpickled_cv.fit(ALL_FOOD_DOCS)
        assert_array_equal(
            cv.get_feature_names_out(), unpickled_cv.get_feature_names_out()
        )


def test_stop_words_removal():
    # Ensure that deleting the stop_words_ attribute doesn't affect transform

    fitted_vectorizers = (
        TfidfVectorizer().fit(JUNK_FOOD_DOCS),
        CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS),
        CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS),
    )

    for vect in fitted_vectorizers:
        vect_transform = vect.transform(JUNK_FOOD_DOCS).toarray()

        vect.stop_words_ = None
        stop_None_transform = vect.transform(JUNK_FOOD_DOCS).toarray()

        delattr(vect, "stop_words_")
        stop_del_transform = vect.transform(JUNK_FOOD_DOCS).toarray()

        assert_array_equal(stop_None_transform, vect_transform)
        assert_array_equal(stop_del_transform, vect_transform)


def test_pickling_transformer():
    X = CountVectorizer().fit_transform(JUNK_FOOD_DOCS)
    orig = TfidfTransformer().fit(X)
    s = pickle.dumps(orig)
    copy = pickle.loads(s)
    assert type(copy) == orig.__class__
    assert_array_equal(copy.fit_transform(X).toarray(), orig.fit_transform(X).toarray())


def test_transformer_idf_setter():
    X = CountVectorizer().fit_transform(JUNK_FOOD_DOCS)
    orig = TfidfTransformer().fit(X)
    copy = TfidfTransformer()
    copy.idf_ = orig.idf_
    assert_array_equal(copy.transform(X).toarray(), orig.transform(X).toarray())


def test_tfidf_vectorizer_setter():
    orig = TfidfVectorizer(use_idf=True)
    orig.fit(JUNK_FOOD_DOCS)
    copy = TfidfVectorizer(vocabulary=orig.vocabulary_, use_idf=True)
    copy.idf_ = orig.idf_
    assert_array_equal(
        copy.transform(JUNK_FOOD_DOCS).toarray(),
        orig.transform(JUNK_FOOD_DOCS).toarray(),
    )
    # `idf_` cannot be set with `use_idf=False`
    copy = TfidfVectorizer(vocabulary=orig.vocabulary_, use_idf=False)
    err_msg = "`idf_` cannot be set when `user_idf=False`."
    with pytest.raises(ValueError, match=err_msg):
        copy.idf_ = orig.idf_


def test_tfidfvectorizer_invalid_idf_attr():
    vect = TfidfVectorizer(use_idf=True)
    vect.fit(JUNK_FOOD_DOCS)
    copy = TfidfVectorizer(vocabulary=vect.vocabulary_, use_idf=True)
    expected_idf_len = len(vect.idf_)
    invalid_idf = [1.0] * (expected_idf_len + 1)
    with pytest.raises(ValueError):
        setattr(copy, "idf_", invalid_idf)


def test_non_unique_vocab():
    vocab = ["a", "b", "c", "a", "a"]
    vect = CountVectorizer(vocabulary=vocab)
    with pytest.raises(ValueError):
        vect.fit([])


@fails_if_pypy
def test_hashingvectorizer_nan_in_docs():
    # np.nan can appear when using pandas to load text fields from a csv file
    # with missing values.
    message = "np.nan is an invalid document, expected byte or unicode string."
    exception = ValueError

    def func():
        hv = HashingVectorizer()
        hv.fit_transform(["hello world", np.nan, "hello hello"])

    with pytest.raises(exception, match=message):
        func()


def test_tfidfvectorizer_binary():
    # Non-regression test: TfidfVectorizer used to ignore its "binary" param.
    v = TfidfVectorizer(binary=True, use_idf=False, norm=None)
    assert v.binary

    X = v.fit_transform(["hello world", "hello hello"]).toarray()
    assert_array_equal(X.ravel(), [1, 1, 1, 0])
    X2 = v.transform(["hello world", "hello hello"]).toarray()
    assert_array_equal(X2.ravel(), [1, 1, 1, 0])


def test_tfidfvectorizer_export_idf():
    vect = TfidfVectorizer(use_idf=True)
    vect.fit(JUNK_FOOD_DOCS)
    assert_array_almost_equal(vect.idf_, vect._tfidf.idf_)


def test_vectorizer_vocab_clone():
    vect_vocab = TfidfVectorizer(vocabulary=["the"])
    vect_vocab_clone = clone(vect_vocab)
    vect_vocab.fit(ALL_FOOD_DOCS)
    vect_vocab_clone.fit(ALL_FOOD_DOCS)
    assert vect_vocab_clone.vocabulary_ == vect_vocab.vocabulary_


@pytest.mark.parametrize(
    "Vectorizer", (CountVectorizer, TfidfVectorizer, HashingVectorizer)
)
def test_vectorizer_string_object_as_input(Vectorizer):
    message = "Iterable over raw text documents expected, string object received."
    vec = Vectorizer()

    with pytest.raises(ValueError, match=message):
        vec.fit_transform("hello world!")

    with pytest.raises(ValueError, match=message):
        vec.fit("hello world!")
    vec.fit(["some text", "some other text"])

    with pytest.raises(ValueError, match=message):
        vec.transform("hello world!")


@pytest.mark.parametrize("X_dtype", [np.float32, np.float64])
def test_tfidf_transformer_type(X_dtype):
    X = sparse.rand(10, 20000, dtype=X_dtype, random_state=42)
    X_trans = TfidfTransformer().fit_transform(X)
    assert X_trans.dtype == X.dtype


def test_tfidf_transformer_sparse():
    X = sparse.rand(10, 20000, dtype=np.float64, random_state=42)
    X_csc = sparse.csc_matrix(X)
    X_csr = sparse.csr_matrix(X)

    X_trans_csc = TfidfTransformer().fit_transform(X_csc)
    X_trans_csr = TfidfTransformer().fit_transform(X_csr)
    assert_allclose_dense_sparse(X_trans_csc, X_trans_csr)
    assert X_trans_csc.format == X_trans_csr.format


@pytest.mark.parametrize(
    "vectorizer_dtype, output_dtype, warning_expected",
    [
        (np.int32, np.float64, True),
        (np.int64, np.float64, True),
        (np.float32, np.float32, False),
        (np.float64, np.float64, False),
    ],
)
def test_tfidf_vectorizer_type(vectorizer_dtype, output_dtype, warning_expected):
    X = np.array(["numpy", "scipy", "sklearn"])
    vectorizer = TfidfVectorizer(dtype=vectorizer_dtype)

    warning_msg_match = "'dtype' should be used."
    if warning_expected:
        with pytest.warns(UserWarning, match=warning_msg_match):
            X_idf = vectorizer.fit_transform(X)
    else:
        with warnings.catch_warnings():
            warnings.simplefilter("error", UserWarning)
            X_idf = vectorizer.fit_transform(X)
    assert X_idf.dtype == output_dtype


@pytest.mark.parametrize(
    "vec",
    [
        HashingVectorizer(ngram_range=(2, 1)),
        CountVectorizer(ngram_range=(2, 1)),
        TfidfVectorizer(ngram_range=(2, 1)),
    ],
)
def test_vectorizers_invalid_ngram_range(vec):
    # vectorizers could be initialized with invalid ngram range
    # test for raising error message
    invalid_range = vec.ngram_range
    message = re.escape(
        f"Invalid value for ngram_range={invalid_range} "
        "lower boundary larger than the upper boundary."
    )
    if isinstance(vec, HashingVectorizer) and IS_PYPY:
        pytest.xfail(reason="HashingVectorizer is not supported on PyPy")

    with pytest.raises(ValueError, match=message):
        vec.fit(["good news everyone"])

    with pytest.raises(ValueError, match=message):
        vec.fit_transform(["good news everyone"])

    if isinstance(vec, HashingVectorizer):
        with pytest.raises(ValueError, match=message):
            vec.transform(["good news everyone"])


def _check_stop_words_consistency(estimator):
    stop_words = estimator.get_stop_words()
    tokenize = estimator.build_tokenizer()
    preprocess = estimator.build_preprocessor()
    return estimator._check_stop_words_consistency(stop_words, preprocess, tokenize)


@fails_if_pypy
def test_vectorizer_stop_words_inconsistent():
    lstr = r"\['and', 'll', 've'\]"
    message = (
        "Your stop_words may be inconsistent with your "
        "preprocessing. Tokenizing the stop words generated "
        "tokens %s not in stop_words." % lstr
    )
    for vec in [CountVectorizer(), TfidfVectorizer(), HashingVectorizer()]:
        vec.set_params(stop_words=["you've", "you", "you'll", "AND"])
        with pytest.warns(UserWarning, match=message):
            vec.fit_transform(["hello world"])
        # reset stop word validation
        del vec._stop_words_id
        assert _check_stop_words_consistency(vec) is False

    # Only one warning per stop list
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        vec.fit_transform(["hello world"])
    assert _check_stop_words_consistency(vec) is None

    # Test caching of inconsistency assessment
    vec.set_params(stop_words=["you've", "you", "you'll", "blah", "AND"])
    with pytest.warns(UserWarning, match=message):
        vec.fit_transform(["hello world"])


@skip_if_32bit
def test_countvectorizer_sort_features_64bit_sparse_indices():
    """
    Check that CountVectorizer._sort_features preserves the dtype of its sparse
    feature matrix.

    This test is skipped on 32bit platforms, see:
        https://github.com/scikit-learn/scikit-learn/pull/11295
    for more details.
    """

    X = sparse.csr_matrix((5, 5), dtype=np.int64)

    # force indices and indptr to int64.
    INDICES_DTYPE = np.int64
    X.indices = X.indices.astype(INDICES_DTYPE)
    X.indptr = X.indptr.astype(INDICES_DTYPE)

    vocabulary = {"scikit-learn": 0, "is": 1, "great!": 2}

    Xs = CountVectorizer()._sort_features(X, vocabulary)

    assert INDICES_DTYPE == Xs.indices.dtype


@fails_if_pypy
@pytest.mark.parametrize(
    "Estimator", [CountVectorizer, TfidfVectorizer, HashingVectorizer]
)
def test_stop_word_validation_custom_preprocessor(Estimator):
    data = [{"text": "some text"}]

    vec = Estimator()
    assert _check_stop_words_consistency(vec) is True

    vec = Estimator(preprocessor=lambda x: x["text"], stop_words=["and"])
    assert _check_stop_words_consistency(vec) == "error"
    # checks are cached
    assert _check_stop_words_consistency(vec) is None
    vec.fit_transform(data)

    class CustomEstimator(Estimator):
        def build_preprocessor(self):
            return lambda x: x["text"]

    vec = CustomEstimator(stop_words=["and"])
    assert _check_stop_words_consistency(vec) == "error"

    vec = Estimator(
        tokenizer=lambda doc: re.compile(r"\w{1,}").findall(doc), stop_words=["and"]
    )
    assert _check_stop_words_consistency(vec) is True


@pytest.mark.parametrize(
    "Estimator", [CountVectorizer, TfidfVectorizer, HashingVectorizer]
)
@pytest.mark.parametrize(
    "input_type, err_type, err_msg",
    [
        ("filename", FileNotFoundError, ""),
        ("file", AttributeError, "'str' object has no attribute 'read'"),
    ],
)
def test_callable_analyzer_error(Estimator, input_type, err_type, err_msg):
    if issubclass(Estimator, HashingVectorizer) and IS_PYPY:
        pytest.xfail("HashingVectorizer is not supported on PyPy")
    data = ["this is text, not file or filename"]
    with pytest.raises(err_type, match=err_msg):
        Estimator(analyzer=lambda x: x.split(), input=input_type).fit_transform(data)


@pytest.mark.parametrize(
    "Estimator",
    [
        CountVectorizer,
        TfidfVectorizer,
        pytest.param(HashingVectorizer, marks=fails_if_pypy),
    ],
)
@pytest.mark.parametrize(
    "analyzer", [lambda doc: open(doc, "r"), lambda doc: doc.read()]
)
@pytest.mark.parametrize("input_type", ["file", "filename"])
def test_callable_analyzer_change_behavior(Estimator, analyzer, input_type):
    data = ["this is text, not file or filename"]
    with pytest.raises((FileNotFoundError, AttributeError)):
        Estimator(analyzer=analyzer, input=input_type).fit_transform(data)


@pytest.mark.parametrize(
    "Estimator", [CountVectorizer, TfidfVectorizer, HashingVectorizer]
)
def test_callable_analyzer_reraise_error(tmpdir, Estimator):
    # check if a custom exception from the analyzer is shown to the user
    def analyzer(doc):
        raise Exception("testing")

    if issubclass(Estimator, HashingVectorizer) and IS_PYPY:
        pytest.xfail("HashingVectorizer is not supported on PyPy")

    f = tmpdir.join("file.txt")
    f.write("sample content\n")

    with pytest.raises(Exception, match="testing"):
        Estimator(analyzer=analyzer, input="file").fit_transform([f])


@pytest.mark.parametrize(
    "Vectorizer", [CountVectorizer, HashingVectorizer, TfidfVectorizer]
)
@pytest.mark.parametrize(
    "stop_words, tokenizer, preprocessor, ngram_range, token_pattern,"
    "analyzer, unused_name, ovrd_name, ovrd_msg",
    [
        (
            ["you've", "you'll"],
            None,
            None,
            (1, 1),
            None,
            "char",
            "'stop_words'",
            "'analyzer'",
            "!= 'word'",
        ),
        (
            None,
            lambda s: s.split(),
            None,
            (1, 1),
            None,
            "char",
            "'tokenizer'",
            "'analyzer'",
            "!= 'word'",
        ),
        (
            None,
            lambda s: s.split(),
            None,
            (1, 1),
            r"\w+",
            "word",
            "'token_pattern'",
            "'tokenizer'",
            "is not None",
        ),
        (
            None,
            None,
            lambda s: s.upper(),
            (1, 1),
            r"\w+",
            lambda s: s.upper(),
            "'preprocessor'",
            "'analyzer'",
            "is callable",
        ),
        (
            None,
            None,
            None,
            (1, 2),
            None,
            lambda s: s.upper(),
            "'ngram_range'",
            "'analyzer'",
            "is callable",
        ),
        (
            None,
            None,
            None,
            (1, 1),
            r"\w+",
            "char",
            "'token_pattern'",
            "'analyzer'",
            "!= 'word'",
        ),
    ],
)
def test_unused_parameters_warn(
    Vectorizer,
    stop_words,
    tokenizer,
    preprocessor,
    ngram_range,
    token_pattern,
    analyzer,
    unused_name,
    ovrd_name,
    ovrd_msg,
):

    train_data = JUNK_FOOD_DOCS
    # setting parameter and checking for corresponding warning messages
    vect = Vectorizer()
    vect.set_params(
        stop_words=stop_words,
        tokenizer=tokenizer,
        preprocessor=preprocessor,
        ngram_range=ngram_range,
        token_pattern=token_pattern,
        analyzer=analyzer,
    )
    msg = "The parameter %s will not be used since %s %s" % (
        unused_name,
        ovrd_name,
        ovrd_msg,
    )
    with pytest.warns(UserWarning, match=msg):
        vect.fit(train_data)


@pytest.mark.parametrize(
    "Vectorizer, X",
    (
        (HashingVectorizer, [{"foo": 1, "bar": 2}, {"foo": 3, "baz": 1}]),
        (CountVectorizer, JUNK_FOOD_DOCS),
    ),
)
def test_n_features_in(Vectorizer, X):
    # For vectorizers, n_features_in_ does not make sense
    vectorizer = Vectorizer()
    assert not hasattr(vectorizer, "n_features_in_")
    vectorizer.fit(X)
    assert not hasattr(vectorizer, "n_features_in_")


def test_tie_breaking_sample_order_invariance():
    # Checks the sample order invariance when setting max_features
    # non-regression test for #17939
    vec = CountVectorizer(max_features=1)
    vocab1 = vec.fit(["hello", "world"]).vocabulary_
    vocab2 = vec.fit(["world", "hello"]).vocabulary_
    assert vocab1 == vocab2


@fails_if_pypy
def test_nonnegative_hashing_vectorizer_result_indices():
    # add test for pr 19035
    hashing = HashingVectorizer(n_features=1000000, ngram_range=(2, 3))
    indices = hashing.transform(["22pcs efuture"]).indices
    assert indices[0] >= 0


@pytest.mark.parametrize(
    "Estimator", [CountVectorizer, TfidfVectorizer, TfidfTransformer, HashingVectorizer]
)
def test_vectorizers_do_not_have_set_output(Estimator):
    """Check that vectorizers do not define set_output."""
    est = Estimator()
    assert not hasattr(est, "set_output")