1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
import warnings
import pytest
import numpy as np
from numpy.testing import assert_allclose
from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris
from sklearn.datasets import make_multilabel_classification
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.inspection._plot.decision_boundary import _check_boundary_response_method
# TODO: Remove when https://github.com/numpy/numpy/issues/14397 is resolved
pytestmark = pytest.mark.filterwarnings(
"ignore:In future, it will be an error for 'np.bool_':DeprecationWarning:"
"matplotlib.*"
)
X, y = make_classification(
n_informative=1,
n_redundant=1,
n_clusters_per_class=1,
n_features=2,
random_state=42,
)
@pytest.fixture(scope="module")
def fitted_clf():
return LogisticRegression().fit(X, y)
def test_input_data_dimension(pyplot):
"""Check that we raise an error when `X` does not have exactly 2 features."""
X, y = make_classification(n_samples=10, n_features=4, random_state=0)
clf = LogisticRegression().fit(X, y)
msg = "n_features must be equal to 2. Got 4 instead."
with pytest.raises(ValueError, match=msg):
DecisionBoundaryDisplay.from_estimator(estimator=clf, X=X)
def test_check_boundary_response_method_auto():
"""Check _check_boundary_response_method behavior with 'auto'."""
class A:
def decision_function(self):
pass
a_inst = A()
method = _check_boundary_response_method(a_inst, "auto")
assert method == a_inst.decision_function
class B:
def predict_proba(self):
pass
b_inst = B()
method = _check_boundary_response_method(b_inst, "auto")
assert method == b_inst.predict_proba
class C:
def predict_proba(self):
pass
def decision_function(self):
pass
c_inst = C()
method = _check_boundary_response_method(c_inst, "auto")
assert method == c_inst.decision_function
class D:
def predict(self):
pass
d_inst = D()
method = _check_boundary_response_method(d_inst, "auto")
assert method == d_inst.predict
@pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
def test_multiclass_error(pyplot, response_method):
"""Check multiclass errors."""
X, y = make_classification(n_classes=3, n_informative=3, random_state=0)
X = X[:, [0, 1]]
lr = LogisticRegression().fit(X, y)
msg = (
"Multiclass classifiers are only supported when response_method is 'predict' or"
" 'auto'"
)
with pytest.raises(ValueError, match=msg):
DecisionBoundaryDisplay.from_estimator(lr, X, response_method=response_method)
@pytest.mark.parametrize("response_method", ["auto", "predict"])
def test_multiclass(pyplot, response_method):
"""Check multiclass gives expected results."""
grid_resolution = 10
eps = 1.0
X, y = make_classification(n_classes=3, n_informative=3, random_state=0)
X = X[:, [0, 1]]
lr = LogisticRegression(random_state=0).fit(X, y)
disp = DecisionBoundaryDisplay.from_estimator(
lr, X, response_method=response_method, grid_resolution=grid_resolution, eps=1.0
)
x0_min, x0_max = X[:, 0].min() - eps, X[:, 0].max() + eps
x1_min, x1_max = X[:, 1].min() - eps, X[:, 1].max() + eps
xx0, xx1 = np.meshgrid(
np.linspace(x0_min, x0_max, grid_resolution),
np.linspace(x1_min, x1_max, grid_resolution),
)
response = lr.predict(np.c_[xx0.ravel(), xx1.ravel()])
assert_allclose(disp.response, response.reshape(xx0.shape))
assert_allclose(disp.xx0, xx0)
assert_allclose(disp.xx1, xx1)
@pytest.mark.parametrize(
"kwargs, error_msg",
[
(
{"plot_method": "hello_world"},
r"plot_method must be one of contourf, contour, pcolormesh. Got hello_world"
r" instead.",
),
(
{"grid_resolution": 1},
r"grid_resolution must be greater than 1. Got 1 instead",
),
(
{"grid_resolution": -1},
r"grid_resolution must be greater than 1. Got -1 instead",
),
({"eps": -1.1}, r"eps must be greater than or equal to 0. Got -1.1 instead"),
],
)
def test_input_validation_errors(pyplot, kwargs, error_msg, fitted_clf):
"""Check input validation from_estimator."""
with pytest.raises(ValueError, match=error_msg):
DecisionBoundaryDisplay.from_estimator(fitted_clf, X, **kwargs)
def test_display_plot_input_error(pyplot, fitted_clf):
"""Check input validation for `plot`."""
disp = DecisionBoundaryDisplay.from_estimator(fitted_clf, X, grid_resolution=5)
with pytest.raises(ValueError, match="plot_method must be 'contourf'"):
disp.plot(plot_method="hello_world")
@pytest.mark.parametrize(
"response_method", ["auto", "predict", "predict_proba", "decision_function"]
)
@pytest.mark.parametrize("plot_method", ["contourf", "contour"])
def test_decision_boundary_display(pyplot, fitted_clf, response_method, plot_method):
"""Check that decision boundary is correct."""
fig, ax = pyplot.subplots()
eps = 2.0
disp = DecisionBoundaryDisplay.from_estimator(
fitted_clf,
X,
grid_resolution=5,
response_method=response_method,
plot_method=plot_method,
eps=eps,
ax=ax,
)
assert isinstance(disp.surface_, pyplot.matplotlib.contour.QuadContourSet)
assert disp.ax_ == ax
assert disp.figure_ == fig
x0, x1 = X[:, 0], X[:, 1]
x0_min, x0_max = x0.min() - eps, x0.max() + eps
x1_min, x1_max = x1.min() - eps, x1.max() + eps
assert disp.xx0.min() == pytest.approx(x0_min)
assert disp.xx0.max() == pytest.approx(x0_max)
assert disp.xx1.min() == pytest.approx(x1_min)
assert disp.xx1.max() == pytest.approx(x1_max)
fig2, ax2 = pyplot.subplots()
# change plotting method for second plot
disp.plot(plot_method="pcolormesh", ax=ax2, shading="auto")
assert isinstance(disp.surface_, pyplot.matplotlib.collections.QuadMesh)
assert disp.ax_ == ax2
assert disp.figure_ == fig2
@pytest.mark.parametrize(
"response_method, msg",
[
(
"predict_proba",
"MyClassifier has none of the following attributes: predict_proba",
),
(
"decision_function",
"MyClassifier has none of the following attributes: decision_function",
),
(
"auto",
"MyClassifier has none of the following attributes: decision_function, "
"predict_proba, predict",
),
(
"bad_method",
"MyClassifier has none of the following attributes: bad_method",
),
],
)
def test_error_bad_response(pyplot, response_method, msg):
"""Check errors for bad response."""
class MyClassifier(BaseEstimator, ClassifierMixin):
def fit(self, X, y):
self.fitted_ = True
self.classes_ = [0, 1]
return self
clf = MyClassifier().fit(X, y)
with pytest.raises(ValueError, match=msg):
DecisionBoundaryDisplay.from_estimator(clf, X, response_method=response_method)
@pytest.mark.parametrize("response_method", ["auto", "predict", "predict_proba"])
def test_multilabel_classifier_error(pyplot, response_method):
"""Check that multilabel classifier raises correct error."""
X, y = make_multilabel_classification(random_state=0)
X = X[:, :2]
tree = DecisionTreeClassifier().fit(X, y)
msg = "Multi-label and multi-output multi-class classifiers are not supported"
with pytest.raises(ValueError, match=msg):
DecisionBoundaryDisplay.from_estimator(
tree,
X,
response_method=response_method,
)
@pytest.mark.parametrize("response_method", ["auto", "predict", "predict_proba"])
def test_multi_output_multi_class_classifier_error(pyplot, response_method):
"""Check that multi-output multi-class classifier raises correct error."""
X = np.asarray([[0, 1], [1, 2]])
y = np.asarray([["tree", "cat"], ["cat", "tree"]])
tree = DecisionTreeClassifier().fit(X, y)
msg = "Multi-label and multi-output multi-class classifiers are not supported"
with pytest.raises(ValueError, match=msg):
DecisionBoundaryDisplay.from_estimator(
tree,
X,
response_method=response_method,
)
def test_multioutput_regressor_error(pyplot):
"""Check that multioutput regressor raises correct error."""
X = np.asarray([[0, 1], [1, 2]])
y = np.asarray([[0, 1], [4, 1]])
tree = DecisionTreeRegressor().fit(X, y)
with pytest.raises(ValueError, match="Multi-output regressors are not supported"):
DecisionBoundaryDisplay.from_estimator(tree, X)
@pytest.mark.filterwarnings(
# We expect to raise the following warning because the classifier is fit on a
# NumPy array
"ignore:X has feature names, but LogisticRegression was fitted without"
)
def test_dataframe_labels_used(pyplot, fitted_clf):
"""Check that column names are used for pandas."""
pd = pytest.importorskip("pandas")
df = pd.DataFrame(X, columns=["col_x", "col_y"])
# pandas column names are used by default
_, ax = pyplot.subplots()
disp = DecisionBoundaryDisplay.from_estimator(fitted_clf, df, ax=ax)
assert ax.get_xlabel() == "col_x"
assert ax.get_ylabel() == "col_y"
# second call to plot will have the names
fig, ax = pyplot.subplots()
disp.plot(ax=ax)
assert ax.get_xlabel() == "col_x"
assert ax.get_ylabel() == "col_y"
# axes with a label will not get overridden
fig, ax = pyplot.subplots()
ax.set(xlabel="hello", ylabel="world")
disp.plot(ax=ax)
assert ax.get_xlabel() == "hello"
assert ax.get_ylabel() == "world"
# labels get overriden only if provided to the `plot` method
disp.plot(ax=ax, xlabel="overwritten_x", ylabel="overwritten_y")
assert ax.get_xlabel() == "overwritten_x"
assert ax.get_ylabel() == "overwritten_y"
# labels do not get inferred if provided to `from_estimator`
_, ax = pyplot.subplots()
disp = DecisionBoundaryDisplay.from_estimator(
fitted_clf, df, ax=ax, xlabel="overwritten_x", ylabel="overwritten_y"
)
assert ax.get_xlabel() == "overwritten_x"
assert ax.get_ylabel() == "overwritten_y"
def test_string_target(pyplot):
"""Check that decision boundary works with classifiers trained on string labels."""
iris = load_iris()
X = iris.data[:, [0, 1]]
# Use strings as target
y = iris.target_names[iris.target]
log_reg = LogisticRegression().fit(X, y)
# Does not raise
DecisionBoundaryDisplay.from_estimator(
log_reg,
X,
grid_resolution=5,
response_method="predict",
)
def test_dataframe_support(pyplot):
"""Check that passing a dataframe at fit and to the Display does not
raise warnings.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/23311
"""
pd = pytest.importorskip("pandas")
df = pd.DataFrame(X, columns=["col_x", "col_y"])
estimator = LogisticRegression().fit(df, y)
with warnings.catch_warnings():
# no warnings linked to feature names validation should be raised
warnings.simplefilter("error", UserWarning)
DecisionBoundaryDisplay.from_estimator(estimator, df, response_method="predict")
|