File: test_permutation_importance.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (542 lines) | stat: -rw-r--r-- 20,054 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import pytest
import numpy as np

from numpy.testing import assert_allclose

from sklearn.compose import ColumnTransformer
from sklearn.datasets import load_diabetes
from sklearn.datasets import load_iris
from sklearn.datasets import make_classification
from sklearn.datasets import make_regression
from sklearn.dummy import DummyClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from sklearn.impute import SimpleImputer
from sklearn.inspection import permutation_importance
from sklearn.model_selection import train_test_split
from sklearn.metrics import (
    get_scorer,
    mean_squared_error,
    r2_score,
)
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import scale
from sklearn.utils import parallel_backend
from sklearn.utils._testing import _convert_container


@pytest.mark.parametrize("n_jobs", [1, 2])
@pytest.mark.parametrize("max_samples", [0.5, 1.0])
def test_permutation_importance_correlated_feature_regression(n_jobs, max_samples):
    # Make sure that feature highly correlated to the target have a higher
    # importance
    rng = np.random.RandomState(42)
    n_repeats = 5

    X, y = load_diabetes(return_X_y=True)
    y_with_little_noise = (y + rng.normal(scale=0.001, size=y.shape[0])).reshape(-1, 1)

    X = np.hstack([X, y_with_little_noise])

    clf = RandomForestRegressor(n_estimators=10, random_state=42)
    clf.fit(X, y)

    result = permutation_importance(
        clf,
        X,
        y,
        n_repeats=n_repeats,
        random_state=rng,
        n_jobs=n_jobs,
        max_samples=max_samples,
    )

    assert result.importances.shape == (X.shape[1], n_repeats)

    # the correlated feature with y was added as the last column and should
    # have the highest importance
    assert np.all(result.importances_mean[-1] > result.importances_mean[:-1])


@pytest.mark.parametrize("n_jobs", [1, 2])
@pytest.mark.parametrize("max_samples", [0.5, 1.0])
def test_permutation_importance_correlated_feature_regression_pandas(
    n_jobs, max_samples
):
    pd = pytest.importorskip("pandas")

    # Make sure that feature highly correlated to the target have a higher
    # importance
    rng = np.random.RandomState(42)
    n_repeats = 5

    dataset = load_iris()
    X, y = dataset.data, dataset.target
    y_with_little_noise = (y + rng.normal(scale=0.001, size=y.shape[0])).reshape(-1, 1)

    # Adds feature correlated with y as the last column
    X = pd.DataFrame(X, columns=dataset.feature_names)
    X["correlated_feature"] = y_with_little_noise

    clf = RandomForestClassifier(n_estimators=10, random_state=42)
    clf.fit(X, y)

    result = permutation_importance(
        clf,
        X,
        y,
        n_repeats=n_repeats,
        random_state=rng,
        n_jobs=n_jobs,
        max_samples=max_samples,
    )

    assert result.importances.shape == (X.shape[1], n_repeats)

    # the correlated feature with y was added as the last column and should
    # have the highest importance
    assert np.all(result.importances_mean[-1] > result.importances_mean[:-1])


@pytest.mark.parametrize("n_jobs", [1, 2])
@pytest.mark.parametrize("max_samples", [0.5, 1.0])
def test_robustness_to_high_cardinality_noisy_feature(n_jobs, max_samples, seed=42):
    # Permutation variable importance should not be affected by the high
    # cardinality bias of traditional feature importances, especially when
    # computed on a held-out test set:
    rng = np.random.RandomState(seed)
    n_repeats = 5
    n_samples = 1000
    n_classes = 5
    n_informative_features = 2
    n_noise_features = 1
    n_features = n_informative_features + n_noise_features

    # Generate a multiclass classification dataset and a set of informative
    # binary features that can be used to predict some classes of y exactly
    # while leaving some classes unexplained to make the problem harder.
    classes = np.arange(n_classes)
    y = rng.choice(classes, size=n_samples)
    X = np.hstack([(y == c).reshape(-1, 1) for c in classes[:n_informative_features]])
    X = X.astype(np.float32)

    # Not all target classes are explained by the binary class indicator
    # features:
    assert n_informative_features < n_classes

    # Add 10 other noisy features with high cardinality (numerical) values
    # that can be used to overfit the training data.
    X = np.concatenate([X, rng.randn(n_samples, n_noise_features)], axis=1)
    assert X.shape == (n_samples, n_features)

    # Split the dataset to be able to evaluate on a held-out test set. The
    # Test size should be large enough for importance measurements to be
    # stable:
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.5, random_state=rng
    )
    clf = RandomForestClassifier(n_estimators=5, random_state=rng)
    clf.fit(X_train, y_train)

    # Variable importances computed by impurity decrease on the tree node
    # splits often use the noisy features in splits. This can give misleading
    # impression that high cardinality noisy variables are the most important:
    tree_importances = clf.feature_importances_
    informative_tree_importances = tree_importances[:n_informative_features]
    noisy_tree_importances = tree_importances[n_informative_features:]
    assert informative_tree_importances.max() < noisy_tree_importances.min()

    # Let's check that permutation-based feature importances do not have this
    # problem.
    r = permutation_importance(
        clf,
        X_test,
        y_test,
        n_repeats=n_repeats,
        random_state=rng,
        n_jobs=n_jobs,
        max_samples=max_samples,
    )

    assert r.importances.shape == (X.shape[1], n_repeats)

    # Split the importances between informative and noisy features
    informative_importances = r.importances_mean[:n_informative_features]
    noisy_importances = r.importances_mean[n_informative_features:]

    # Because we do not have a binary variable explaining each target classes,
    # the RF model will have to use the random variable to make some
    # (overfitting) splits (as max_depth is not set). Therefore the noisy
    # variables will be non-zero but with small values oscillating around
    # zero:
    assert max(np.abs(noisy_importances)) > 1e-7
    assert noisy_importances.max() < 0.05

    # The binary features correlated with y should have a higher importance
    # than the high cardinality noisy features.
    # The maximum test accuracy is 2 / 5 == 0.4, each informative feature
    # contributing approximately a bit more than 0.2 of accuracy.
    assert informative_importances.min() > 0.15


def test_permutation_importance_mixed_types():
    rng = np.random.RandomState(42)
    n_repeats = 4

    # Last column is correlated with y
    X = np.array([[1.0, 2.0, 3.0, np.nan], [2, 1, 2, 1]]).T
    y = np.array([0, 1, 0, 1])

    clf = make_pipeline(SimpleImputer(), LogisticRegression(solver="lbfgs"))
    clf.fit(X, y)
    result = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng)

    assert result.importances.shape == (X.shape[1], n_repeats)

    # the correlated feature with y is the last column and should
    # have the highest importance
    assert np.all(result.importances_mean[-1] > result.importances_mean[:-1])

    # use another random state
    rng = np.random.RandomState(0)
    result2 = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng)
    assert result2.importances.shape == (X.shape[1], n_repeats)

    assert not np.allclose(result.importances, result2.importances)

    # the correlated feature with y is the last column and should
    # have the highest importance
    assert np.all(result2.importances_mean[-1] > result2.importances_mean[:-1])


def test_permutation_importance_mixed_types_pandas():
    pd = pytest.importorskip("pandas")
    rng = np.random.RandomState(42)
    n_repeats = 5

    # Last column is correlated with y
    X = pd.DataFrame({"col1": [1.0, 2.0, 3.0, np.nan], "col2": ["a", "b", "a", "b"]})
    y = np.array([0, 1, 0, 1])

    num_preprocess = make_pipeline(SimpleImputer(), StandardScaler())
    preprocess = ColumnTransformer(
        [("num", num_preprocess, ["col1"]), ("cat", OneHotEncoder(), ["col2"])]
    )
    clf = make_pipeline(preprocess, LogisticRegression(solver="lbfgs"))
    clf.fit(X, y)

    result = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng)

    assert result.importances.shape == (X.shape[1], n_repeats)
    # the correlated feature with y is the last column and should
    # have the highest importance
    assert np.all(result.importances_mean[-1] > result.importances_mean[:-1])


def test_permutation_importance_linear_regresssion():
    X, y = make_regression(n_samples=500, n_features=10, random_state=0)

    X = scale(X)
    y = scale(y)

    lr = LinearRegression().fit(X, y)

    # this relationship can be computed in closed form
    expected_importances = 2 * lr.coef_**2
    results = permutation_importance(
        lr, X, y, n_repeats=50, scoring="neg_mean_squared_error"
    )
    assert_allclose(
        expected_importances, results.importances_mean, rtol=1e-1, atol=1e-6
    )


@pytest.mark.parametrize("max_samples", [500, 1.0])
def test_permutation_importance_equivalence_sequential_parallel(max_samples):
    # regression test to make sure that sequential and parallel calls will
    # output the same results.
    # Also tests that max_samples equal to number of samples is equivalent to 1.0
    X, y = make_regression(n_samples=500, n_features=10, random_state=0)
    lr = LinearRegression().fit(X, y)

    importance_sequential = permutation_importance(
        lr, X, y, n_repeats=5, random_state=0, n_jobs=1, max_samples=max_samples
    )

    # First check that the problem is structured enough and that the model is
    # complex enough to not yield trivial, constant importances:
    imp_min = importance_sequential["importances"].min()
    imp_max = importance_sequential["importances"].max()
    assert imp_max - imp_min > 0.3

    # The actually check that parallelism does not impact the results
    # either with shared memory (threading) or without isolated memory
    # via process-based parallelism using the default backend
    # ('loky' or 'multiprocessing') depending on the joblib version:

    # process-based parallelism (by default):
    importance_processes = permutation_importance(
        lr, X, y, n_repeats=5, random_state=0, n_jobs=2
    )
    assert_allclose(
        importance_processes["importances"], importance_sequential["importances"]
    )

    # thread-based parallelism:
    with parallel_backend("threading"):
        importance_threading = permutation_importance(
            lr, X, y, n_repeats=5, random_state=0, n_jobs=2
        )
    assert_allclose(
        importance_threading["importances"], importance_sequential["importances"]
    )


@pytest.mark.parametrize("n_jobs", [None, 1, 2])
@pytest.mark.parametrize("max_samples", [0.5, 1.0])
def test_permutation_importance_equivalence_array_dataframe(n_jobs, max_samples):
    # This test checks that the column shuffling logic has the same behavior
    # both a dataframe and a simple numpy array.
    pd = pytest.importorskip("pandas")

    # regression test to make sure that sequential and parallel calls will
    # output the same results.
    X, y = make_regression(n_samples=100, n_features=5, random_state=0)
    X_df = pd.DataFrame(X)

    # Add a categorical feature that is statistically linked to y:
    binner = KBinsDiscretizer(n_bins=3, encode="ordinal")
    cat_column = binner.fit_transform(y.reshape(-1, 1))

    # Concatenate the extra column to the numpy array: integers will be
    # cast to float values
    X = np.hstack([X, cat_column])
    assert X.dtype.kind == "f"

    # Insert extra column as a non-numpy-native dtype (while keeping backward
    # compat for old pandas versions):
    if hasattr(pd, "Categorical"):
        cat_column = pd.Categorical(cat_column.ravel())
    else:
        cat_column = cat_column.ravel()
    new_col_idx = len(X_df.columns)
    X_df[new_col_idx] = cat_column
    assert X_df[new_col_idx].dtype == cat_column.dtype

    # Stich an arbitrary index to the dataframe:
    X_df.index = np.arange(len(X_df)).astype(str)

    rf = RandomForestRegressor(n_estimators=5, max_depth=3, random_state=0)
    rf.fit(X, y)

    n_repeats = 3
    importance_array = permutation_importance(
        rf,
        X,
        y,
        n_repeats=n_repeats,
        random_state=0,
        n_jobs=n_jobs,
        max_samples=max_samples,
    )

    # First check that the problem is structured enough and that the model is
    # complex enough to not yield trivial, constant importances:
    imp_min = importance_array["importances"].min()
    imp_max = importance_array["importances"].max()
    assert imp_max - imp_min > 0.3

    # Now check that importances computed on dataframe matche the values
    # of those computed on the array with the same data.
    importance_dataframe = permutation_importance(
        rf,
        X_df,
        y,
        n_repeats=n_repeats,
        random_state=0,
        n_jobs=n_jobs,
        max_samples=max_samples,
    )
    assert_allclose(
        importance_array["importances"], importance_dataframe["importances"]
    )


@pytest.mark.parametrize("input_type", ["array", "dataframe"])
def test_permutation_importance_large_memmaped_data(input_type):
    # Smoke, non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/15810
    n_samples, n_features = int(5e4), 4
    X, y = make_classification(
        n_samples=n_samples, n_features=n_features, random_state=0
    )
    assert X.nbytes > 1e6  # trigger joblib memmaping

    X = _convert_container(X, input_type)
    clf = DummyClassifier(strategy="prior").fit(X, y)

    # Actual smoke test: should not raise any error:
    n_repeats = 5
    r = permutation_importance(clf, X, y, n_repeats=n_repeats, n_jobs=2)

    # Auxiliary check: DummyClassifier is feature independent:
    # permutating feature should not change the predictions
    expected_importances = np.zeros((n_features, n_repeats))
    assert_allclose(expected_importances, r.importances)


def test_permutation_importance_sample_weight():
    # Creating data with 2 features and 1000 samples, where the target
    # variable is a linear combination of the two features, such that
    # in half of the samples the impact of feature 1 is twice the impact of
    # feature 2, and vice versa on the other half of the samples.
    rng = np.random.RandomState(1)
    n_samples = 1000
    n_features = 2
    n_half_samples = n_samples // 2
    x = rng.normal(0.0, 0.001, (n_samples, n_features))
    y = np.zeros(n_samples)
    y[:n_half_samples] = 2 * x[:n_half_samples, 0] + x[:n_half_samples, 1]
    y[n_half_samples:] = x[n_half_samples:, 0] + 2 * x[n_half_samples:, 1]

    # Fitting linear regression with perfect prediction
    lr = LinearRegression(fit_intercept=False)
    lr.fit(x, y)

    # When all samples are weighted with the same weights, the ratio of
    # the two features importance should equal to 1 on expectation (when using
    # mean absolutes error as the loss function).
    pi = permutation_importance(
        lr, x, y, random_state=1, scoring="neg_mean_absolute_error", n_repeats=200
    )
    x1_x2_imp_ratio_w_none = pi.importances_mean[0] / pi.importances_mean[1]
    assert x1_x2_imp_ratio_w_none == pytest.approx(1, 0.01)

    # When passing a vector of ones as the sample_weight, results should be
    # the same as in the case that sample_weight=None.
    w = np.ones(n_samples)
    pi = permutation_importance(
        lr,
        x,
        y,
        random_state=1,
        scoring="neg_mean_absolute_error",
        n_repeats=200,
        sample_weight=w,
    )
    x1_x2_imp_ratio_w_ones = pi.importances_mean[0] / pi.importances_mean[1]
    assert x1_x2_imp_ratio_w_ones == pytest.approx(x1_x2_imp_ratio_w_none, 0.01)

    # When the ratio between the weights of the first half of the samples and
    # the second half of the samples approaches to infinity, the ratio of
    # the two features importance should equal to 2 on expectation (when using
    # mean absolutes error as the loss function).
    w = np.hstack(
        [np.repeat(10.0**10, n_half_samples), np.repeat(1.0, n_half_samples)]
    )
    lr.fit(x, y, w)
    pi = permutation_importance(
        lr,
        x,
        y,
        random_state=1,
        scoring="neg_mean_absolute_error",
        n_repeats=200,
        sample_weight=w,
    )
    x1_x2_imp_ratio_w = pi.importances_mean[0] / pi.importances_mean[1]
    assert x1_x2_imp_ratio_w / x1_x2_imp_ratio_w_none == pytest.approx(2, 0.01)


def test_permutation_importance_no_weights_scoring_function():
    # Creating a scorer function that does not takes sample_weight
    def my_scorer(estimator, X, y):
        return 1

    # Creating some data and estimator for the permutation test
    x = np.array([[1, 2], [3, 4]])
    y = np.array([1, 2])
    w = np.array([1, 1])
    lr = LinearRegression()
    lr.fit(x, y)

    # test that permutation_importance does not return error when
    # sample_weight is None
    try:
        permutation_importance(lr, x, y, random_state=1, scoring=my_scorer, n_repeats=1)
    except TypeError:
        pytest.fail(
            "permutation_test raised an error when using a scorer "
            "function that does not accept sample_weight even though "
            "sample_weight was None"
        )

    # test that permutation_importance raise exception when sample_weight is
    # not None
    with pytest.raises(TypeError):
        permutation_importance(
            lr, x, y, random_state=1, scoring=my_scorer, n_repeats=1, sample_weight=w
        )


@pytest.mark.parametrize(
    "list_single_scorer, multi_scorer",
    [
        (["r2", "neg_mean_squared_error"], ["r2", "neg_mean_squared_error"]),
        (
            ["r2", "neg_mean_squared_error"],
            {
                "r2": get_scorer("r2"),
                "neg_mean_squared_error": get_scorer("neg_mean_squared_error"),
            },
        ),
        (
            ["r2", "neg_mean_squared_error"],
            lambda estimator, X, y: {
                "r2": r2_score(y, estimator.predict(X)),
                "neg_mean_squared_error": -mean_squared_error(y, estimator.predict(X)),
            },
        ),
    ],
)
def test_permutation_importance_multi_metric(list_single_scorer, multi_scorer):
    # Test permutation importance when scoring contains multiple scorers

    # Creating some data and estimator for the permutation test
    x, y = make_regression(n_samples=500, n_features=10, random_state=0)
    lr = LinearRegression().fit(x, y)

    multi_importance = permutation_importance(
        lr, x, y, random_state=1, scoring=multi_scorer, n_repeats=2
    )
    assert set(multi_importance.keys()) == set(list_single_scorer)

    for scorer in list_single_scorer:
        multi_result = multi_importance[scorer]
        single_result = permutation_importance(
            lr, x, y, random_state=1, scoring=scorer, n_repeats=2
        )

        assert_allclose(multi_result.importances, single_result.importances)


@pytest.mark.parametrize("max_samples", [-1, 5])
def test_permutation_importance_max_samples_error(max_samples):
    """Check that a proper error message is raised when `max_samples` is not
    set to a valid input value.
    """
    X = np.array([(1.0, 2.0, 3.0, 4.0)]).T
    y = np.array([0, 1, 0, 1])

    clf = LogisticRegression()
    clf.fit(X, y)

    err_msg = r"max_samples must be in \(0, n_samples\]"

    with pytest.raises(ValueError, match=err_msg):
        permutation_importance(clf, X, y, max_samples=max_samples)