File: _cd_fast.pyx

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (957 lines) | stat: -rw-r--r-- 33,655 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Fabian Pedregosa <fabian.pedregosa@inria.fr>
#         Olivier Grisel <olivier.grisel@ensta.org>
#         Alexis Mignon <alexis.mignon@gmail.com>
#         Manoj Kumar <manojkumarsivaraj334@gmail.com>
#
# License: BSD 3 clause

from libc.math cimport fabs
cimport numpy as cnp
import numpy as np

from cython cimport floating
import warnings
from ..exceptions import ConvergenceWarning

from ..utils._cython_blas cimport (_axpy, _dot, _asum, _gemv, _nrm2,
                                   _copy, _scal)
from ..utils._cython_blas cimport ColMajor, Trans, NoTrans


from ..utils._random cimport our_rand_r

ctypedef cnp.float64_t DOUBLE
ctypedef cnp.uint32_t UINT32_t

cnp.import_array()

# The following two functions are shamelessly copied from the tree code.

cdef enum:
    # Max value for our rand_r replacement (near the bottom).
    # We don't use RAND_MAX because it's different across platforms and
    # particularly tiny on Windows/MSVC.
    RAND_R_MAX = 0x7FFFFFFF


cdef inline UINT32_t rand_int(UINT32_t end, UINT32_t* random_state) nogil:
    """Generate a random integer in [0; end)."""
    return our_rand_r(random_state) % end


cdef inline floating fmax(floating x, floating y) nogil:
    if x > y:
        return x
    return y


cdef inline floating fsign(floating f) nogil:
    if f == 0:
        return 0
    elif f > 0:
        return 1.0
    else:
        return -1.0


cdef floating abs_max(int n, floating* a) nogil:
    """np.max(np.abs(a))"""
    cdef int i
    cdef floating m = fabs(a[0])
    cdef floating d
    for i in range(1, n):
        d = fabs(a[i])
        if d > m:
            m = d
    return m


cdef floating max(int n, floating* a) nogil:
    """np.max(a)"""
    cdef int i
    cdef floating m = a[0]
    cdef floating d
    for i in range(1, n):
        d = a[i]
        if d > m:
            m = d
    return m


cdef floating diff_abs_max(int n, floating* a, floating* b) nogil:
    """np.max(np.abs(a - b))"""
    cdef int i
    cdef floating m = fabs(a[0] - b[0])
    cdef floating d
    for i in range(1, n):
        d = fabs(a[i] - b[i])
        if d > m:
            m = d
    return m

# TODO: use const fused typed memoryview where possible when Cython 0.29.33 is used.
def enet_coordinate_descent(
    cnp.ndarray[floating, ndim=1, mode='c'] w,
    floating alpha,
    floating beta,
    cnp.ndarray[floating, ndim=2, mode='fortran'] X,
    cnp.ndarray[floating, ndim=1, mode='c'] y,
    unsigned int max_iter,
    floating tol,
    object rng,
    bint random=0,
    bint positive=0
):
    """Cython version of the coordinate descent algorithm
        for Elastic-Net regression

        We minimize

        (1/2) * norm(y - X w, 2)^2 + alpha norm(w, 1) + (beta/2) norm(w, 2)^2

    Returns
    -------
    w : ndarray of shape (n_features,)
        ElasticNet coefficients.
    gap : float
        Achieved dual gap.
    tol : float
        Equals input `tol` times `np.dot(y, y)`. The tolerance used for the dual gap.
    n_iter : int
        Number of coordinate descent iterations.
    """

    if floating is float:
        dtype = np.float32
    else:
        dtype = np.float64

    # get the data information into easy vars
    cdef unsigned int n_samples = X.shape[0]
    cdef unsigned int n_features = X.shape[1]

    # compute norms of the columns of X
    cdef floating[::1] norm_cols_X = np.square(X).sum(axis=0)

    # initial value of the residuals
    cdef floating[::1] R = np.empty(n_samples, dtype=dtype)
    cdef floating[::1] XtA = np.empty(n_features, dtype=dtype)

    cdef floating tmp
    cdef floating w_ii
    cdef floating d_w_max
    cdef floating w_max
    cdef floating d_w_ii
    cdef floating gap = tol + 1.0
    cdef floating d_w_tol = tol
    cdef floating dual_norm_XtA
    cdef floating R_norm2
    cdef floating w_norm2
    cdef floating l1_norm
    cdef floating const
    cdef floating A_norm2
    cdef unsigned int ii
    cdef unsigned int i
    cdef unsigned int n_iter = 0
    cdef unsigned int f_iter
    cdef UINT32_t rand_r_state_seed = rng.randint(0, RAND_R_MAX)
    cdef UINT32_t* rand_r_state = &rand_r_state_seed

    if alpha == 0 and beta == 0:
        warnings.warn("Coordinate descent with no regularization may lead to "
                      "unexpected results and is discouraged.")

    with nogil:
        # R = y - np.dot(X, w)
        _copy(n_samples, &y[0], 1, &R[0], 1)
        _gemv(ColMajor, NoTrans, n_samples, n_features, -1.0, &X[0, 0],
              n_samples, &w[0], 1, 1.0, &R[0], 1)

        # tol *= np.dot(y, y)
        tol *= _dot(n_samples, &y[0], 1, &y[0], 1)

        for n_iter in range(max_iter):
            w_max = 0.0
            d_w_max = 0.0
            for f_iter in range(n_features):  # Loop over coordinates
                if random:
                    ii = rand_int(n_features, rand_r_state)
                else:
                    ii = f_iter

                if norm_cols_X[ii] == 0.0:
                    continue

                w_ii = w[ii]  # Store previous value

                if w_ii != 0.0:
                    # R += w_ii * X[:,ii]
                    _axpy(n_samples, w_ii, &X[0, ii], 1, &R[0], 1)

                # tmp = (X[:,ii]*R).sum()
                tmp = _dot(n_samples, &X[0, ii], 1, &R[0], 1)

                if positive and tmp < 0:
                    w[ii] = 0.0
                else:
                    w[ii] = (fsign(tmp) * fmax(fabs(tmp) - alpha, 0)
                             / (norm_cols_X[ii] + beta))

                if w[ii] != 0.0:
                    # R -=  w[ii] * X[:,ii] # Update residual
                    _axpy(n_samples, -w[ii], &X[0, ii], 1, &R[0], 1)

                # update the maximum absolute coefficient update
                d_w_ii = fabs(w[ii] - w_ii)
                d_w_max = fmax(d_w_max, d_w_ii)

                w_max = fmax(w_max, fabs(w[ii]))

            if (w_max == 0.0 or
                d_w_max / w_max < d_w_tol or
                n_iter == max_iter - 1):
                # the biggest coordinate update of this iteration was smaller
                # than the tolerance: check the duality gap as ultimate
                # stopping criterion

                # XtA = np.dot(X.T, R) - beta * w
                _copy(n_features, &w[0], 1, &XtA[0], 1)
                _gemv(ColMajor, Trans,
                      n_samples, n_features, 1.0, &X[0, 0], n_samples,
                      &R[0], 1,
                      -beta, &XtA[0], 1)

                if positive:
                    dual_norm_XtA = max(n_features, &XtA[0])
                else:
                    dual_norm_XtA = abs_max(n_features, &XtA[0])

                # R_norm2 = np.dot(R, R)
                R_norm2 = _dot(n_samples, &R[0], 1, &R[0], 1)

                # w_norm2 = np.dot(w, w)
                w_norm2 = _dot(n_features, &w[0], 1, &w[0], 1)

                if (dual_norm_XtA > alpha):
                    const = alpha / dual_norm_XtA
                    A_norm2 = R_norm2 * (const ** 2)
                    gap = 0.5 * (R_norm2 + A_norm2)
                else:
                    const = 1.0
                    gap = R_norm2

                l1_norm = _asum(n_features, &w[0], 1)

                # np.dot(R.T, y)
                gap += (alpha * l1_norm
                        - const * _dot(n_samples, &R[0], 1, &y[0], 1)
                        + 0.5 * beta * (1 + const ** 2) * (w_norm2))

                if gap < tol:
                    # return if we reached desired tolerance
                    break

        else:
            # for/else, runs if for doesn't end with a `break`
            with gil:
                message = (
                    "Objective did not converge. You might want to increase "
                    "the number of iterations, check the scale of the "
                    "features or consider increasing regularisation. "
                    f"Duality gap: {gap:.3e}, tolerance: {tol:.3e}"
                )
                if alpha < np.finfo(np.float64).eps:
                    message += (
                        " Linear regression models with null weight for the "
                        "l1 regularization term are more efficiently fitted "
                        "using one of the solvers implemented in "
                        "sklearn.linear_model.Ridge/RidgeCV instead."
                    )
                warnings.warn(message, ConvergenceWarning)

    return np.asarray(w), gap, tol, n_iter + 1


# TODO: use const fused typed memoryview where possible when Cython 0.29.33 is used.
def sparse_enet_coordinate_descent(
    cnp.ndarray[floating, ndim=1, mode='c'] w,
    floating alpha,
    floating beta,
    cnp.ndarray[floating, ndim=1, mode='c'] X_data,
    const int[::1] X_indices,
    const int[::1] X_indptr,
    cnp.ndarray[floating, ndim=1, mode='c'] y,
    cnp.ndarray[floating, ndim=1, mode='c'] sample_weight,
    cnp.ndarray[floating, ndim=1, mode='c'] X_mean,
    unsigned int max_iter,
    floating tol,
    object rng,
    bint random=0,
    bint positive=0,
):
    """Cython version of the coordinate descent algorithm for Elastic-Net

    We minimize:

        1/2 * norm(y - Z w, 2)^2 + alpha * norm(w, 1) + (beta/2) * norm(w, 2)^2

    where Z = X - X_mean.
    With sample weights sw, this becomes

        1/2 * sum(sw * (y - Z w)^2, axis=0) + alpha * norm(w, 1)
        + (beta/2) * norm(w, 2)^2

    and X_mean is the weighted average of X (per column).

    Returns
    -------
    w : ndarray of shape (n_features,)
        ElasticNet coefficients.
    gap : float
        Achieved dual gap.
    tol : float
        Equals input `tol` times `np.dot(y, y)`. The tolerance used for the dual gap.
    n_iter : int
        Number of coordinate descent iterations.
    """
    # Notes for sample_weight:
    # For dense X, one centers X and y and then rescales them by sqrt(sample_weight).
    # Here, for sparse X, we get the sample_weight averaged center X_mean. We take care
    # that every calculation results as if we had rescaled y and X (and therefore also
    # X_mean) by sqrt(sample_weight) without actually calculating the square root.
    # We work with:
    #     yw = sample_weight
    #     R = sample_weight * residual
    #     norm_cols_X = np.sum(sample_weight * (X - X_mean)**2, axis=0)

    # get the data information into easy vars
    cdef unsigned int n_samples = y.shape[0]
    cdef unsigned int n_features = w.shape[0]

    # compute norms of the columns of X
    cdef unsigned int ii
    cdef floating[:] norm_cols_X

    cdef unsigned int startptr = X_indptr[0]
    cdef unsigned int endptr

    # initial value of the residuals
    # R = y - Zw, weighted version R = sample_weight * (y - Zw)
    cdef floating[::1] R
    cdef floating[::1] XtA
    cdef floating[::1] yw

    if floating is float:
        dtype = np.float32
    else:
        dtype = np.float64

    norm_cols_X = np.zeros(n_features, dtype=dtype)
    XtA = np.zeros(n_features, dtype=dtype)

    cdef floating tmp
    cdef floating w_ii
    cdef floating d_w_max
    cdef floating w_max
    cdef floating d_w_ii
    cdef floating X_mean_ii
    cdef floating R_sum = 0.0
    cdef floating R_norm2
    cdef floating w_norm2
    cdef floating A_norm2
    cdef floating l1_norm
    cdef floating normalize_sum
    cdef floating gap = tol + 1.0
    cdef floating d_w_tol = tol
    cdef floating dual_norm_XtA
    cdef unsigned int jj
    cdef unsigned int n_iter = 0
    cdef unsigned int f_iter
    cdef UINT32_t rand_r_state_seed = rng.randint(0, RAND_R_MAX)
    cdef UINT32_t* rand_r_state = &rand_r_state_seed
    cdef bint center = False
    cdef bint no_sample_weights = sample_weight is None
    cdef int kk

    if no_sample_weights:
        yw = y
        R = y.copy()
    else:
        yw = np.multiply(sample_weight, y)
        R = yw.copy()

    with nogil:
        # center = (X_mean != 0).any()
        for ii in range(n_features):
            if X_mean[ii]:
                center = True
                break

        for ii in range(n_features):
            X_mean_ii = X_mean[ii]
            endptr = X_indptr[ii + 1]
            normalize_sum = 0.0
            w_ii = w[ii]

            if no_sample_weights:
                for jj in range(startptr, endptr):
                    normalize_sum += (X_data[jj] - X_mean_ii) ** 2
                    R[X_indices[jj]] -= X_data[jj] * w_ii
                norm_cols_X[ii] = normalize_sum + \
                    (n_samples - endptr + startptr) * X_mean_ii ** 2
                if center:
                    for jj in range(n_samples):
                        R[jj] += X_mean_ii * w_ii
            else:
                for jj in range(startptr, endptr):
                    tmp = sample_weight[X_indices[jj]]
                    # second term will be subtracted by loop over range(n_samples)
                    normalize_sum += (tmp * (X_data[jj] - X_mean_ii) ** 2
                                      - tmp * X_mean_ii ** 2)
                    R[X_indices[jj]] -= tmp * X_data[jj] * w_ii
                if center:
                    for jj in range(n_samples):
                        normalize_sum += sample_weight[jj] * X_mean_ii ** 2
                        R[jj] += sample_weight[jj] * X_mean_ii * w_ii
                norm_cols_X[ii] = normalize_sum
            startptr = endptr

        # tol *= np.dot(y, y)
        # with sample weights: tol *= y @ (sw * y)
        tol *= _dot(n_samples, &y[0], 1, &yw[0], 1)

        for n_iter in range(max_iter):

            w_max = 0.0
            d_w_max = 0.0

            for f_iter in range(n_features):  # Loop over coordinates
                if random:
                    ii = rand_int(n_features, rand_r_state)
                else:
                    ii = f_iter

                if norm_cols_X[ii] == 0.0:
                    continue

                startptr = X_indptr[ii]
                endptr = X_indptr[ii + 1]
                w_ii = w[ii]  # Store previous value
                X_mean_ii = X_mean[ii]

                if w_ii != 0.0:
                    # R += w_ii * X[:,ii]
                    if no_sample_weights:
                        for jj in range(startptr, endptr):
                            R[X_indices[jj]] += X_data[jj] * w_ii
                        if center:
                            for jj in range(n_samples):
                                R[jj] -= X_mean_ii * w_ii
                    else:
                        for jj in range(startptr, endptr):
                            tmp = sample_weight[X_indices[jj]]
                            R[X_indices[jj]] += tmp * X_data[jj] * w_ii
                        if center:
                            for jj in range(n_samples):
                                R[jj] -= sample_weight[jj] * X_mean_ii * w_ii

                # tmp = (X[:,ii] * R).sum()
                tmp = 0.0
                for jj in range(startptr, endptr):
                    tmp += R[X_indices[jj]] * X_data[jj]

                if center:
                    R_sum = 0.0
                    for jj in range(n_samples):
                        R_sum += R[jj]
                    tmp -= R_sum * X_mean_ii

                if positive and tmp < 0.0:
                    w[ii] = 0.0
                else:
                    w[ii] = fsign(tmp) * fmax(fabs(tmp) - alpha, 0) \
                            / (norm_cols_X[ii] + beta)

                if w[ii] != 0.0:
                    # R -=  w[ii] * X[:,ii] # Update residual
                    if no_sample_weights:
                        for jj in range(startptr, endptr):
                            R[X_indices[jj]] -= X_data[jj] * w[ii]
                        if center:
                            for jj in range(n_samples):
                                R[jj] += X_mean_ii * w[ii]
                    else:
                        for jj in range(startptr, endptr):
                            tmp = sample_weight[X_indices[jj]]
                            R[X_indices[jj]] -= tmp * X_data[jj] * w[ii]
                        if center:
                            for jj in range(n_samples):
                                R[jj] += sample_weight[jj] * X_mean_ii * w[ii]

                # update the maximum absolute coefficient update
                d_w_ii = fabs(w[ii] - w_ii)
                d_w_max = fmax(d_w_max, d_w_ii)

                w_max = fmax(w_max, fabs(w[ii]))

            if w_max == 0.0 or d_w_max / w_max < d_w_tol or n_iter == max_iter - 1:
                # the biggest coordinate update of this iteration was smaller than
                # the tolerance: check the duality gap as ultimate stopping
                # criterion

                # sparse X.T / dense R dot product
                if center:
                    R_sum = 0.0
                    for jj in range(n_samples):
                        R_sum += R[jj]

                # XtA = X.T @ R - beta * w
                for ii in range(n_features):
                    XtA[ii] = 0.0
                    for kk in range(X_indptr[ii], X_indptr[ii + 1]):
                        XtA[ii] += X_data[kk] * R[X_indices[kk]]

                    if center:
                        XtA[ii] -= X_mean[ii] * R_sum
                    XtA[ii] -= beta * w[ii]

                if positive:
                    dual_norm_XtA = max(n_features, &XtA[0])
                else:
                    dual_norm_XtA = abs_max(n_features, &XtA[0])

                # R_norm2 = np.dot(R, R)
                if no_sample_weights:
                    R_norm2 = _dot(n_samples, &R[0], 1, &R[0], 1)
                else:
                    R_norm2 = 0.0
                    for jj in range(n_samples):
                        # R is already multiplied by sample_weight
                        if sample_weight[jj] != 0:
                            R_norm2 += (R[jj] ** 2) / sample_weight[jj]

                # w_norm2 = np.dot(w, w)
                w_norm2 = _dot(n_features, &w[0], 1, &w[0], 1)
                if (dual_norm_XtA > alpha):
                    const = alpha / dual_norm_XtA
                    A_norm2 = R_norm2 * const**2
                    gap = 0.5 * (R_norm2 + A_norm2)
                else:
                    const = 1.0
                    gap = R_norm2

                l1_norm = _asum(n_features, &w[0], 1)

                gap += (alpha * l1_norm - const * _dot(
                            n_samples,
                            &R[0], 1,
                            &y[0], 1
                            )
                        + 0.5 * beta * (1 + const ** 2) * w_norm2)

                if gap < tol:
                    # return if we reached desired tolerance
                    break

        else:
            # for/else, runs if for doesn't end with a `break`
            with gil:
                warnings.warn("Objective did not converge. You might want to "
                              "increase the number of iterations. Duality "
                              "gap: {}, tolerance: {}".format(gap, tol),
                              ConvergenceWarning)

    return np.asarray(w), gap, tol, n_iter + 1


# TODO: use const fused typed memoryview where possible when Cython 0.29.33 is used.
def enet_coordinate_descent_gram(
    cnp.ndarray[floating, ndim=1, mode='c'] w,
    floating alpha,
    floating beta,
    cnp.ndarray[floating, ndim=2, mode='c'] Q,
    cnp.ndarray[floating, ndim=1, mode='c'] q,
    cnp.ndarray[floating, ndim=1] y,
    unsigned int max_iter,
    floating tol,
    object rng,
    bint random=0,
    bint positive=0
):
    """Cython version of the coordinate descent algorithm
        for Elastic-Net regression

        We minimize

        (1/2) * w^T Q w - q^T w + alpha norm(w, 1) + (beta/2) * norm(w, 2)^2

        which amount to the Elastic-Net problem when:
        Q = X^T X (Gram matrix)
        q = X^T y

    Returns
    -------
    w : ndarray of shape (n_features,)
        ElasticNet coefficients.
    gap : float
        Achieved dual gap.
    tol : float
        Equals input `tol` times `np.dot(y, y)`. The tolerance used for the dual gap.
    n_iter : int
        Number of coordinate descent iterations.
    """

    if floating is float:
        dtype = np.float32
    else:
        dtype = np.float64

    # get the data information into easy vars
    cdef unsigned int n_samples = y.shape[0]
    cdef unsigned int n_features = Q.shape[0]

    # initial value "Q w" which will be kept of up to date in the iterations
    cdef floating[:] H = np.dot(Q, w)

    cdef floating[:] XtA = np.zeros(n_features, dtype=dtype)
    cdef floating tmp
    cdef floating w_ii
    cdef floating d_w_max
    cdef floating w_max
    cdef floating d_w_ii
    cdef floating q_dot_w
    cdef floating w_norm2
    cdef floating gap = tol + 1.0
    cdef floating d_w_tol = tol
    cdef floating dual_norm_XtA
    cdef unsigned int ii
    cdef unsigned int n_iter = 0
    cdef unsigned int f_iter
    cdef UINT32_t rand_r_state_seed = rng.randint(0, RAND_R_MAX)
    cdef UINT32_t* rand_r_state = &rand_r_state_seed

    cdef floating y_norm2 = np.dot(y, y)
    cdef floating* w_ptr = &w[0]
    cdef floating* Q_ptr = &Q[0, 0]
    cdef floating* q_ptr = &q[0]
    cdef floating* H_ptr = &H[0]
    cdef floating* XtA_ptr = &XtA[0]
    tol = tol * y_norm2

    if alpha == 0:
        warnings.warn("Coordinate descent without L1 regularization may "
            "lead to unexpected results and is discouraged. "
            "Set l1_ratio > 0 to add L1 regularization.")

    with nogil:
        for n_iter in range(max_iter):
            w_max = 0.0
            d_w_max = 0.0
            for f_iter in range(n_features):  # Loop over coordinates
                if random:
                    ii = rand_int(n_features, rand_r_state)
                else:
                    ii = f_iter

                if Q[ii, ii] == 0.0:
                    continue

                w_ii = w[ii]  # Store previous value

                if w_ii != 0.0:
                    # H -= w_ii * Q[ii]
                    _axpy(n_features, -w_ii, Q_ptr + ii * n_features, 1,
                          H_ptr, 1)

                tmp = q[ii] - H[ii]

                if positive and tmp < 0:
                    w[ii] = 0.0
                else:
                    w[ii] = fsign(tmp) * fmax(fabs(tmp) - alpha, 0) \
                        / (Q[ii, ii] + beta)

                if w[ii] != 0.0:
                    # H +=  w[ii] * Q[ii] # Update H = X.T X w
                    _axpy(n_features, w[ii], Q_ptr + ii * n_features, 1,
                          H_ptr, 1)

                # update the maximum absolute coefficient update
                d_w_ii = fabs(w[ii] - w_ii)
                if d_w_ii > d_w_max:
                    d_w_max = d_w_ii

                if fabs(w[ii]) > w_max:
                    w_max = fabs(w[ii])

            if w_max == 0.0 or d_w_max / w_max < d_w_tol or n_iter == max_iter - 1:
                # the biggest coordinate update of this iteration was smaller than
                # the tolerance: check the duality gap as ultimate stopping
                # criterion

                # q_dot_w = np.dot(w, q)
                q_dot_w = _dot(n_features, w_ptr, 1, q_ptr, 1)

                for ii in range(n_features):
                    XtA[ii] = q[ii] - H[ii] - beta * w[ii]
                if positive:
                    dual_norm_XtA = max(n_features, XtA_ptr)
                else:
                    dual_norm_XtA = abs_max(n_features, XtA_ptr)

                # temp = np.sum(w * H)
                tmp = 0.0
                for ii in range(n_features):
                    tmp += w[ii] * H[ii]
                R_norm2 = y_norm2 + tmp - 2.0 * q_dot_w

                # w_norm2 = np.dot(w, w)
                w_norm2 = _dot(n_features, &w[0], 1, &w[0], 1)

                if (dual_norm_XtA > alpha):
                    const = alpha / dual_norm_XtA
                    A_norm2 = R_norm2 * (const ** 2)
                    gap = 0.5 * (R_norm2 + A_norm2)
                else:
                    const = 1.0
                    gap = R_norm2

                # The call to asum is equivalent to the L1 norm of w
                gap += (alpha * _asum(n_features, &w[0], 1) -
                        const * y_norm2 +  const * q_dot_w +
                        0.5 * beta * (1 + const ** 2) * w_norm2)

                if gap < tol:
                    # return if we reached desired tolerance
                    break

        else:
            # for/else, runs if for doesn't end with a `break`
            with gil:
                warnings.warn("Objective did not converge. You might want to "
                              "increase the number of iterations. Duality "
                              "gap: {}, tolerance: {}".format(gap, tol),
                              ConvergenceWarning)

    return np.asarray(w), gap, tol, n_iter + 1

# TODO: use const fused typed memoryview where possible when Cython 0.29.33 is used.
def enet_coordinate_descent_multi_task(
    cnp.ndarray[floating, ndim=2, mode='fortran'] W,
    floating l1_reg,
    floating l2_reg,
    # TODO: use const qualified fused-typed memoryview when Cython 3.0 is used.
    cnp.ndarray[floating, ndim=2, mode='fortran'] X,
    cnp.ndarray[floating, ndim=2, mode='fortran'] Y,
    unsigned int max_iter,
    floating tol,
    object rng,
    bint random=0
):
    """Cython version of the coordinate descent algorithm
        for Elastic-Net mult-task regression

        We minimize

        0.5 * norm(Y - X W.T, 2)^2 + l1_reg ||W.T||_21 + 0.5 * l2_reg norm(W.T, 2)^2

    Returns
    -------
    W : ndarray of shape (n_tasks, n_features)
        ElasticNet coefficients.
    gap : float
        Achieved dual gap.
    tol : float
        Equals input `tol` times `np.dot(y, y)`. The tolerance used for the dual gap.
    n_iter : int
        Number of coordinate descent iterations.
    """

    if floating is float:
        dtype = np.float32
    else:
        dtype = np.float64

    # get the data information into easy vars
    cdef unsigned int n_samples = X.shape[0]
    cdef unsigned int n_features = X.shape[1]
    cdef unsigned int n_tasks = Y.shape[1]

    # to store XtA
    cdef floating[:, ::1] XtA = np.zeros((n_features, n_tasks), dtype=dtype)
    cdef floating XtA_axis1norm
    cdef floating dual_norm_XtA

    # initial value of the residuals
    cdef floating[::1, :] R = np.zeros((n_samples, n_tasks), dtype=dtype, order='F')

    cdef floating[::1] norm_cols_X = np.zeros(n_features, dtype=dtype)
    cdef floating[::1] tmp = np.zeros(n_tasks, dtype=dtype)
    cdef floating[::1] w_ii = np.zeros(n_tasks, dtype=dtype)
    cdef floating d_w_max
    cdef floating w_max
    cdef floating d_w_ii
    cdef floating nn
    cdef floating W_ii_abs_max
    cdef floating gap = tol + 1.0
    cdef floating d_w_tol = tol
    cdef floating R_norm
    cdef floating w_norm
    cdef floating ry_sum
    cdef floating l21_norm
    cdef unsigned int ii
    cdef unsigned int jj
    cdef unsigned int n_iter = 0
    cdef unsigned int f_iter
    cdef UINT32_t rand_r_state_seed = rng.randint(0, RAND_R_MAX)
    cdef UINT32_t* rand_r_state = &rand_r_state_seed

    cdef floating* X_ptr = &X[0, 0]
    cdef floating* Y_ptr = &Y[0, 0]

    if l1_reg == 0:
        warnings.warn("Coordinate descent with l1_reg=0 may lead to unexpected"
            " results and is discouraged.")

    with nogil:
        # norm_cols_X = (np.asarray(X) ** 2).sum(axis=0)
        for ii in range(n_features):
            norm_cols_X[ii] = _nrm2(n_samples, X_ptr + ii * n_samples, 1) ** 2

        # R = Y - np.dot(X, W.T)
        _copy(n_samples * n_tasks, Y_ptr, 1, &R[0, 0], 1)
        for ii in range(n_features):
            for jj in range(n_tasks):
                if W[jj, ii] != 0:
                    _axpy(n_samples, -W[jj, ii], X_ptr + ii * n_samples, 1,
                          &R[0, jj], 1)

        # tol = tol * linalg.norm(Y, ord='fro') ** 2
        tol = tol * _nrm2(n_samples * n_tasks, Y_ptr, 1) ** 2

        for n_iter in range(max_iter):
            w_max = 0.0
            d_w_max = 0.0
            for f_iter in range(n_features):  # Loop over coordinates
                if random:
                    ii = rand_int(n_features, rand_r_state)
                else:
                    ii = f_iter

                if norm_cols_X[ii] == 0.0:
                    continue

                # w_ii = W[:, ii] # Store previous value
                _copy(n_tasks, &W[0, ii], 1, &w_ii[0], 1)

                # Using Numpy:
                # R += np.dot(X[:, ii][:, None], w_ii[None, :]) # rank 1 update
                # Using Blas Level2:
                # _ger(RowMajor, n_samples, n_tasks, 1.0,
                #      &X[0, ii], 1,
                #      &w_ii[0], 1, &R[0, 0], n_tasks)
                # Using Blas Level1 and for loop to avoid slower threads
                # for such small vectors
                for jj in range(n_tasks):
                    if w_ii[jj] != 0:
                        _axpy(n_samples, w_ii[jj], X_ptr + ii * n_samples, 1,
                              &R[0, jj], 1)

                # Using numpy:
                # tmp = np.dot(X[:, ii][None, :], R).ravel()
                # Using BLAS Level 2:
                # _gemv(RowMajor, Trans, n_samples, n_tasks, 1.0, &R[0, 0],
                #       n_tasks, &X[0, ii], 1, 0.0, &tmp[0], 1)
                # Using BLAS Level 1 (faster for small vectors like here):
                for jj in range(n_tasks):
                    tmp[jj] = _dot(n_samples, X_ptr + ii * n_samples, 1,
                                   &R[0, jj], 1)

                # nn = sqrt(np.sum(tmp ** 2))
                nn = _nrm2(n_tasks, &tmp[0], 1)

                # W[:, ii] = tmp * fmax(1. - l1_reg / nn, 0) / (norm_cols_X[ii] + l2_reg)
                _copy(n_tasks, &tmp[0], 1, &W[0, ii], 1)
                _scal(n_tasks, fmax(1. - l1_reg / nn, 0) / (norm_cols_X[ii] + l2_reg),
                      &W[0, ii], 1)

                # Using numpy:
                # R -= np.dot(X[:, ii][:, None], W[:, ii][None, :])
                # Using BLAS Level 2:
                # Update residual : rank 1 update
                # _ger(RowMajor, n_samples, n_tasks, -1.0,
                #      &X[0, ii], 1, &W[0, ii], 1,
                #      &R[0, 0], n_tasks)
                # Using BLAS Level 1 (faster for small vectors like here):
                for jj in range(n_tasks):
                    if W[jj, ii] != 0:
                        _axpy(n_samples, -W[jj, ii], X_ptr + ii * n_samples, 1,
                              &R[0, jj], 1)

                # update the maximum absolute coefficient update
                d_w_ii = diff_abs_max(n_tasks, &W[0, ii], &w_ii[0])

                if d_w_ii > d_w_max:
                    d_w_max = d_w_ii

                W_ii_abs_max = abs_max(n_tasks, &W[0, ii])
                if W_ii_abs_max > w_max:
                    w_max = W_ii_abs_max

            if w_max == 0.0 or d_w_max / w_max < d_w_tol or n_iter == max_iter - 1:
                # the biggest coordinate update of this iteration was smaller than
                # the tolerance: check the duality gap as ultimate stopping
                # criterion

                # XtA = np.dot(X.T, R) - l2_reg * W.T
                for ii in range(n_features):
                    for jj in range(n_tasks):
                        XtA[ii, jj] = _dot(
                            n_samples, X_ptr + ii * n_samples, 1, &R[0, jj], 1
                            ) - l2_reg * W[jj, ii]

                # dual_norm_XtA = np.max(np.sqrt(np.sum(XtA ** 2, axis=1)))
                dual_norm_XtA = 0.0
                for ii in range(n_features):
                    # np.sqrt(np.sum(XtA ** 2, axis=1))
                    XtA_axis1norm = _nrm2(n_tasks, &XtA[ii, 0], 1)
                    if XtA_axis1norm > dual_norm_XtA:
                        dual_norm_XtA = XtA_axis1norm

                # TODO: use squared L2 norm directly
                # R_norm = linalg.norm(R, ord='fro')
                # w_norm = linalg.norm(W, ord='fro')
                R_norm = _nrm2(n_samples * n_tasks, &R[0, 0], 1)
                w_norm = _nrm2(n_features * n_tasks, &W[0, 0], 1)
                if (dual_norm_XtA > l1_reg):
                    const =  l1_reg / dual_norm_XtA
                    A_norm = R_norm * const
                    gap = 0.5 * (R_norm ** 2 + A_norm ** 2)
                else:
                    const = 1.0
                    gap = R_norm ** 2

                # ry_sum = np.sum(R * y)
                ry_sum = _dot(n_samples * n_tasks, &R[0, 0], 1, &Y[0, 0], 1)

                # l21_norm = np.sqrt(np.sum(W ** 2, axis=0)).sum()
                l21_norm = 0.0
                for ii in range(n_features):
                    l21_norm += _nrm2(n_tasks, &W[0, ii], 1)

                gap += l1_reg * l21_norm - const * ry_sum + \
                     0.5 * l2_reg * (1 + const ** 2) * (w_norm ** 2)

                if gap < tol:
                    # return if we reached desired tolerance
                    break
        else:
            # for/else, runs if for doesn't end with a `break`
            with gil:
                warnings.warn("Objective did not converge. You might want to "
                              "increase the number of iterations. Duality "
                              "gap: {}, tolerance: {}".format(gap, tol),
                              ConvergenceWarning)

    return np.asarray(W), gap, tol, n_iter + 1