1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
# Author: Vlad Niculae
# License: BSD 3 clause
import numpy as np
import pytest
import warnings
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import ignore_warnings
from sklearn.linear_model import (
orthogonal_mp,
orthogonal_mp_gram,
OrthogonalMatchingPursuit,
OrthogonalMatchingPursuitCV,
LinearRegression,
)
from sklearn.utils import check_random_state
from sklearn.datasets import make_sparse_coded_signal
n_samples, n_features, n_nonzero_coefs, n_targets = 25, 35, 5, 3
y, X, gamma = make_sparse_coded_signal(
n_samples=n_targets,
n_components=n_features,
n_features=n_samples,
n_nonzero_coefs=n_nonzero_coefs,
random_state=0,
data_transposed=True,
)
# Make X not of norm 1 for testing
X *= 10
y *= 10
G, Xy = np.dot(X.T, X), np.dot(X.T, y)
# this makes X (n_samples, n_features)
# and y (n_samples, 3)
# TODO(1.4): remove
@pytest.mark.parametrize(
"OmpModel", [OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV]
)
@pytest.mark.parametrize(
"normalize, n_warnings", [(True, 1), (False, 1), ("deprecated", 0)]
)
def test_assure_warning_when_normalize(OmpModel, normalize, n_warnings):
# check that we issue a FutureWarning when normalize was set
rng = check_random_state(0)
n_samples = 200
n_features = 2
X = rng.randn(n_samples, n_features)
X[X < 0.1] = 0.0
y = rng.rand(n_samples)
model = OmpModel(normalize=normalize)
with warnings.catch_warnings(record=True) as rec:
warnings.simplefilter("always", FutureWarning)
model.fit(X, y)
assert len([w.message for w in rec]) == n_warnings
def test_correct_shapes():
assert orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5).shape == (n_features,)
assert orthogonal_mp(X, y, n_nonzero_coefs=5).shape == (n_features, 3)
def test_correct_shapes_gram():
assert orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5).shape == (n_features,)
assert orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5).shape == (n_features, 3)
def test_n_nonzero_coefs():
assert np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)) <= 5
assert (
np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5, precompute=True))
<= 5
)
def test_tol():
tol = 0.5
gamma = orthogonal_mp(X, y[:, 0], tol=tol)
gamma_gram = orthogonal_mp(X, y[:, 0], tol=tol, precompute=True)
assert np.sum((y[:, 0] - np.dot(X, gamma)) ** 2) <= tol
assert np.sum((y[:, 0] - np.dot(X, gamma_gram)) ** 2) <= tol
def test_with_without_gram():
assert_array_almost_equal(
orthogonal_mp(X, y, n_nonzero_coefs=5),
orthogonal_mp(X, y, n_nonzero_coefs=5, precompute=True),
)
def test_with_without_gram_tol():
assert_array_almost_equal(
orthogonal_mp(X, y, tol=1.0), orthogonal_mp(X, y, tol=1.0, precompute=True)
)
def test_unreachable_accuracy():
assert_array_almost_equal(
orthogonal_mp(X, y, tol=0), orthogonal_mp(X, y, n_nonzero_coefs=n_features)
)
warning_message = (
"Orthogonal matching pursuit ended prematurely "
"due to linear dependence in the dictionary. "
"The requested precision might not have been met."
)
with pytest.warns(RuntimeWarning, match=warning_message):
assert_array_almost_equal(
orthogonal_mp(X, y, tol=0, precompute=True),
orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_features),
)
@pytest.mark.parametrize("positional_params", [(X, y), (G, Xy)])
@pytest.mark.parametrize(
"keyword_params",
[{"tol": -1}, {"n_nonzero_coefs": -1}, {"n_nonzero_coefs": n_features + 1}],
)
def test_bad_input(positional_params, keyword_params):
with pytest.raises(ValueError):
orthogonal_mp(*positional_params, **keyword_params)
def test_perfect_signal_recovery():
(idx,) = gamma[:, 0].nonzero()
gamma_rec = orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)
gamma_gram = orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5)
assert_array_equal(idx, np.flatnonzero(gamma_rec))
assert_array_equal(idx, np.flatnonzero(gamma_gram))
assert_array_almost_equal(gamma[:, 0], gamma_rec, decimal=2)
assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2)
def test_orthogonal_mp_gram_readonly():
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/5956
(idx,) = gamma[:, 0].nonzero()
G_readonly = G.copy()
G_readonly.setflags(write=False)
Xy_readonly = Xy.copy()
Xy_readonly.setflags(write=False)
gamma_gram = orthogonal_mp_gram(
G_readonly, Xy_readonly[:, 0], n_nonzero_coefs=5, copy_Gram=False, copy_Xy=False
)
assert_array_equal(idx, np.flatnonzero(gamma_gram))
assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2)
# TODO(1.4): 'normalize' to be removed
@pytest.mark.filterwarnings("ignore:'normalize' was deprecated")
def test_estimator():
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y[:, 0])
assert omp.coef_.shape == (n_features,)
assert omp.intercept_.shape == ()
assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs
omp.fit(X, y)
assert omp.coef_.shape == (n_targets, n_features)
assert omp.intercept_.shape == (n_targets,)
assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs
coef_normalized = omp.coef_[0].copy()
omp.set_params(fit_intercept=True)
omp.fit(X, y[:, 0])
assert_array_almost_equal(coef_normalized, omp.coef_)
omp.set_params(fit_intercept=False)
omp.fit(X, y[:, 0])
assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs
assert omp.coef_.shape == (n_features,)
assert omp.intercept_ == 0
omp.fit(X, y)
assert omp.coef_.shape == (n_targets, n_features)
assert omp.intercept_ == 0
assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs
def test_identical_regressors():
newX = X.copy()
newX[:, 1] = newX[:, 0]
gamma = np.zeros(n_features)
gamma[0] = gamma[1] = 1.0
newy = np.dot(newX, gamma)
warning_message = (
"Orthogonal matching pursuit ended prematurely "
"due to linear dependence in the dictionary. "
"The requested precision might not have been met."
)
with pytest.warns(RuntimeWarning, match=warning_message):
orthogonal_mp(newX, newy, n_nonzero_coefs=2)
def test_swapped_regressors():
gamma = np.zeros(n_features)
# X[:, 21] should be selected first, then X[:, 0] selected second,
# which will take X[:, 21]'s place in case the algorithm does
# column swapping for optimization (which is the case at the moment)
gamma[21] = 1.0
gamma[0] = 0.5
new_y = np.dot(X, gamma)
new_Xy = np.dot(X.T, new_y)
gamma_hat = orthogonal_mp(X, new_y, n_nonzero_coefs=2)
gamma_hat_gram = orthogonal_mp_gram(G, new_Xy, n_nonzero_coefs=2)
assert_array_equal(np.flatnonzero(gamma_hat), [0, 21])
assert_array_equal(np.flatnonzero(gamma_hat_gram), [0, 21])
def test_no_atoms():
y_empty = np.zeros_like(y)
Xy_empty = np.dot(X.T, y_empty)
gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, n_nonzero_coefs=1)
gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, n_nonzero_coefs=1)
assert np.all(gamma_empty == 0)
assert np.all(gamma_empty_gram == 0)
def test_omp_path():
path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True)
last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False)
assert path.shape == (n_features, n_targets, 5)
assert_array_almost_equal(path[:, :, -1], last)
path = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=True)
last = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=False)
assert path.shape == (n_features, n_targets, 5)
assert_array_almost_equal(path[:, :, -1], last)
def test_omp_return_path_prop_with_gram():
path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True, precompute=True)
last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False, precompute=True)
assert path.shape == (n_features, n_targets, 5)
assert_array_almost_equal(path[:, :, -1], last)
# TODO(1.4): 'normalize' to be removed
@pytest.mark.filterwarnings("ignore:'normalize' was deprecated")
def test_omp_cv():
y_ = y[:, 0]
gamma_ = gamma[:, 0]
ompcv = OrthogonalMatchingPursuitCV(
normalize=True, fit_intercept=False, max_iter=10
)
ompcv.fit(X, y_)
assert ompcv.n_nonzero_coefs_ == n_nonzero_coefs
assert_array_almost_equal(ompcv.coef_, gamma_)
omp = OrthogonalMatchingPursuit(
normalize=True, fit_intercept=False, n_nonzero_coefs=ompcv.n_nonzero_coefs_
)
omp.fit(X, y_)
assert_array_almost_equal(ompcv.coef_, omp.coef_)
# TODO(1.4): 'normalize' to be removed
@pytest.mark.filterwarnings("ignore:'normalize' was deprecated")
def test_omp_reaches_least_squares():
# Use small simple data; it's a sanity check but OMP can stop early
rng = check_random_state(0)
n_samples, n_features = (10, 8)
n_targets = 3
X = rng.randn(n_samples, n_features)
Y = rng.randn(n_samples, n_targets)
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features)
lstsq = LinearRegression()
omp.fit(X, Y)
lstsq.fit(X, Y)
assert_array_almost_equal(omp.coef_, lstsq.coef_)
@pytest.mark.parametrize("data_type", (np.float32, np.float64))
def test_omp_gram_dtype_match(data_type):
# verify matching input data type and output data type
coef = orthogonal_mp_gram(
G.astype(data_type), Xy.astype(data_type), n_nonzero_coefs=5
)
assert coef.dtype == data_type
def test_omp_gram_numerical_consistency():
# verify numericaly consistency among np.float32 and np.float64
coef_32 = orthogonal_mp_gram(
G.astype(np.float32), Xy.astype(np.float32), n_nonzero_coefs=5
)
coef_64 = orthogonal_mp_gram(
G.astype(np.float32), Xy.astype(np.float64), n_nonzero_coefs=5
)
assert_allclose(coef_32, coef_64)
|