1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
"""
The :mod:`sklearn.metrics` module includes score functions, performance metrics
and pairwise metrics and distance computations.
"""
from ._ranking import auc
from ._ranking import average_precision_score
from ._ranking import coverage_error
from ._ranking import det_curve
from ._ranking import dcg_score
from ._ranking import label_ranking_average_precision_score
from ._ranking import label_ranking_loss
from ._ranking import ndcg_score
from ._ranking import precision_recall_curve
from ._ranking import roc_auc_score
from ._ranking import roc_curve
from ._ranking import top_k_accuracy_score
from ._classification import accuracy_score
from ._classification import balanced_accuracy_score
from ._classification import class_likelihood_ratios
from ._classification import classification_report
from ._classification import cohen_kappa_score
from ._classification import confusion_matrix
from ._classification import f1_score
from ._classification import fbeta_score
from ._classification import hamming_loss
from ._classification import hinge_loss
from ._classification import jaccard_score
from ._classification import log_loss
from ._classification import matthews_corrcoef
from ._classification import precision_recall_fscore_support
from ._classification import precision_score
from ._classification import recall_score
from ._classification import zero_one_loss
from ._classification import brier_score_loss
from ._classification import multilabel_confusion_matrix
from ._dist_metrics import DistanceMetric
from . import cluster
from .cluster import adjusted_mutual_info_score
from .cluster import adjusted_rand_score
from .cluster import rand_score
from .cluster import pair_confusion_matrix
from .cluster import completeness_score
from .cluster import consensus_score
from .cluster import homogeneity_completeness_v_measure
from .cluster import homogeneity_score
from .cluster import mutual_info_score
from .cluster import normalized_mutual_info_score
from .cluster import fowlkes_mallows_score
from .cluster import silhouette_samples
from .cluster import silhouette_score
from .cluster import calinski_harabasz_score
from .cluster import v_measure_score
from .cluster import davies_bouldin_score
from .pairwise import euclidean_distances
from .pairwise import nan_euclidean_distances
from .pairwise import pairwise_distances
from .pairwise import pairwise_distances_argmin
from .pairwise import pairwise_distances_argmin_min
from .pairwise import pairwise_kernels
from .pairwise import pairwise_distances_chunked
from ._regression import explained_variance_score
from ._regression import max_error
from ._regression import mean_absolute_error
from ._regression import mean_squared_error
from ._regression import mean_squared_log_error
from ._regression import median_absolute_error
from ._regression import mean_absolute_percentage_error
from ._regression import mean_pinball_loss
from ._regression import r2_score
from ._regression import mean_tweedie_deviance
from ._regression import mean_poisson_deviance
from ._regression import mean_gamma_deviance
from ._regression import d2_tweedie_score
from ._regression import d2_pinball_score
from ._regression import d2_absolute_error_score
from ._scorer import check_scoring
from ._scorer import make_scorer
from ._scorer import SCORERS
from ._scorer import get_scorer
from ._scorer import get_scorer_names
from ._plot.det_curve import DetCurveDisplay
from ._plot.roc_curve import RocCurveDisplay
from ._plot.precision_recall_curve import PrecisionRecallDisplay
from ._plot.confusion_matrix import ConfusionMatrixDisplay
from ._plot.regression import PredictionErrorDisplay
__all__ = [
"accuracy_score",
"adjusted_mutual_info_score",
"adjusted_rand_score",
"auc",
"average_precision_score",
"balanced_accuracy_score",
"calinski_harabasz_score",
"check_scoring",
"class_likelihood_ratios",
"classification_report",
"cluster",
"cohen_kappa_score",
"completeness_score",
"ConfusionMatrixDisplay",
"confusion_matrix",
"consensus_score",
"coverage_error",
"d2_tweedie_score",
"d2_absolute_error_score",
"d2_pinball_score",
"dcg_score",
"davies_bouldin_score",
"DetCurveDisplay",
"det_curve",
"DistanceMetric",
"euclidean_distances",
"explained_variance_score",
"f1_score",
"fbeta_score",
"fowlkes_mallows_score",
"get_scorer",
"hamming_loss",
"hinge_loss",
"homogeneity_completeness_v_measure",
"homogeneity_score",
"jaccard_score",
"label_ranking_average_precision_score",
"label_ranking_loss",
"log_loss",
"make_scorer",
"nan_euclidean_distances",
"matthews_corrcoef",
"max_error",
"mean_absolute_error",
"mean_squared_error",
"mean_squared_log_error",
"mean_pinball_loss",
"mean_poisson_deviance",
"mean_gamma_deviance",
"mean_tweedie_deviance",
"median_absolute_error",
"mean_absolute_percentage_error",
"multilabel_confusion_matrix",
"mutual_info_score",
"ndcg_score",
"normalized_mutual_info_score",
"pair_confusion_matrix",
"pairwise_distances",
"pairwise_distances_argmin",
"pairwise_distances_argmin_min",
"pairwise_distances_chunked",
"pairwise_kernels",
"PrecisionRecallDisplay",
"precision_recall_curve",
"precision_recall_fscore_support",
"precision_score",
"PredictionErrorDisplay",
"r2_score",
"rand_score",
"recall_score",
"RocCurveDisplay",
"roc_auc_score",
"roc_curve",
"SCORERS",
"get_scorer_names",
"silhouette_samples",
"silhouette_score",
"top_k_accuracy_score",
"v_measure_score",
"zero_one_loss",
"brier_score_loss",
]
|