File: confusion_matrix.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (482 lines) | stat: -rw-r--r-- 16,355 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
from itertools import product

import numpy as np

from .. import confusion_matrix
from ...utils import check_matplotlib_support
from ...utils.multiclass import unique_labels
from ...base import is_classifier


class ConfusionMatrixDisplay:
    """Confusion Matrix visualization.

    It is recommend to use
    :func:`~sklearn.metrics.ConfusionMatrixDisplay.from_estimator` or
    :func:`~sklearn.metrics.ConfusionMatrixDisplay.from_predictions` to
    create a :class:`ConfusionMatrixDisplay`. All parameters are stored as
    attributes.

    Read more in the :ref:`User Guide <visualizations>`.

    Parameters
    ----------
    confusion_matrix : ndarray of shape (n_classes, n_classes)
        Confusion matrix.

    display_labels : ndarray of shape (n_classes,), default=None
        Display labels for plot. If None, display labels are set from 0 to
        `n_classes - 1`.

    Attributes
    ----------
    im_ : matplotlib AxesImage
        Image representing the confusion matrix.

    text_ : ndarray of shape (n_classes, n_classes), dtype=matplotlib Text, \
            or None
        Array of matplotlib axes. `None` if `include_values` is false.

    ax_ : matplotlib Axes
        Axes with confusion matrix.

    figure_ : matplotlib Figure
        Figure containing the confusion matrix.

    See Also
    --------
    confusion_matrix : Compute Confusion Matrix to evaluate the accuracy of a
        classification.
    ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix
        given an estimator, the data, and the label.
    ConfusionMatrixDisplay.from_predictions : Plot the confusion matrix
        given the true and predicted labels.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.svm import SVC
    >>> X, y = make_classification(random_state=0)
    >>> X_train, X_test, y_train, y_test = train_test_split(X, y,
    ...                                                     random_state=0)
    >>> clf = SVC(random_state=0)
    >>> clf.fit(X_train, y_train)
    SVC(random_state=0)
    >>> predictions = clf.predict(X_test)
    >>> cm = confusion_matrix(y_test, predictions, labels=clf.classes_)
    >>> disp = ConfusionMatrixDisplay(confusion_matrix=cm,
    ...                               display_labels=clf.classes_)
    >>> disp.plot()
    <...>
    >>> plt.show()
    """

    def __init__(self, confusion_matrix, *, display_labels=None):
        self.confusion_matrix = confusion_matrix
        self.display_labels = display_labels

    def plot(
        self,
        *,
        include_values=True,
        cmap="viridis",
        xticks_rotation="horizontal",
        values_format=None,
        ax=None,
        colorbar=True,
        im_kw=None,
        text_kw=None,
    ):
        """Plot visualization.

        Parameters
        ----------
        include_values : bool, default=True
            Includes values in confusion matrix.

        cmap : str or matplotlib Colormap, default='viridis'
            Colormap recognized by matplotlib.

        xticks_rotation : {'vertical', 'horizontal'} or float, \
                         default='horizontal'
            Rotation of xtick labels.

        values_format : str, default=None
            Format specification for values in confusion matrix. If `None`,
            the format specification is 'd' or '.2g' whichever is shorter.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        colorbar : bool, default=True
            Whether or not to add a colorbar to the plot.

        im_kw : dict, default=None
            Dict with keywords passed to `matplotlib.pyplot.imshow` call.

        text_kw : dict, default=None
            Dict with keywords passed to `matplotlib.pyplot.text` call.

            .. versionadded:: 1.2

        Returns
        -------
        display : :class:`~sklearn.metrics.ConfusionMatrixDisplay`
            Returns a :class:`~sklearn.metrics.ConfusionMatrixDisplay` instance
            that contains all the information to plot the confusion matrix.
        """
        check_matplotlib_support("ConfusionMatrixDisplay.plot")
        import matplotlib.pyplot as plt

        if ax is None:
            fig, ax = plt.subplots()
        else:
            fig = ax.figure

        cm = self.confusion_matrix
        n_classes = cm.shape[0]

        default_im_kw = dict(interpolation="nearest", cmap=cmap)
        im_kw = im_kw or {}
        im_kw = {**default_im_kw, **im_kw}
        text_kw = text_kw or {}

        self.im_ = ax.imshow(cm, **im_kw)
        self.text_ = None
        cmap_min, cmap_max = self.im_.cmap(0), self.im_.cmap(1.0)

        if include_values:
            self.text_ = np.empty_like(cm, dtype=object)

            # print text with appropriate color depending on background
            thresh = (cm.max() + cm.min()) / 2.0

            for i, j in product(range(n_classes), range(n_classes)):
                color = cmap_max if cm[i, j] < thresh else cmap_min

                if values_format is None:
                    text_cm = format(cm[i, j], ".2g")
                    if cm.dtype.kind != "f":
                        text_d = format(cm[i, j], "d")
                        if len(text_d) < len(text_cm):
                            text_cm = text_d
                else:
                    text_cm = format(cm[i, j], values_format)

                default_text_kwargs = dict(ha="center", va="center", color=color)
                text_kwargs = {**default_text_kwargs, **text_kw}

                self.text_[i, j] = ax.text(j, i, text_cm, **text_kwargs)

        if self.display_labels is None:
            display_labels = np.arange(n_classes)
        else:
            display_labels = self.display_labels
        if colorbar:
            fig.colorbar(self.im_, ax=ax)
        ax.set(
            xticks=np.arange(n_classes),
            yticks=np.arange(n_classes),
            xticklabels=display_labels,
            yticklabels=display_labels,
            ylabel="True label",
            xlabel="Predicted label",
        )

        ax.set_ylim((n_classes - 0.5, -0.5))
        plt.setp(ax.get_xticklabels(), rotation=xticks_rotation)

        self.figure_ = fig
        self.ax_ = ax
        return self

    @classmethod
    def from_estimator(
        cls,
        estimator,
        X,
        y,
        *,
        labels=None,
        sample_weight=None,
        normalize=None,
        display_labels=None,
        include_values=True,
        xticks_rotation="horizontal",
        values_format=None,
        cmap="viridis",
        ax=None,
        colorbar=True,
        im_kw=None,
        text_kw=None,
    ):
        """Plot Confusion Matrix given an estimator and some data.

        Read more in the :ref:`User Guide <confusion_matrix>`.

        .. versionadded:: 1.0

        Parameters
        ----------
        estimator : estimator instance
            Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
            in which the last estimator is a classifier.

        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Input values.

        y : array-like of shape (n_samples,)
            Target values.

        labels : array-like of shape (n_classes,), default=None
            List of labels to index the confusion matrix. This may be used to
            reorder or select a subset of labels. If `None` is given, those
            that appear at least once in `y_true` or `y_pred` are used in
            sorted order.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        normalize : {'true', 'pred', 'all'}, default=None
            Either to normalize the counts display in the matrix:

            - if `'true'`, the confusion matrix is normalized over the true
              conditions (e.g. rows);
            - if `'pred'`, the confusion matrix is normalized over the
              predicted conditions (e.g. columns);
            - if `'all'`, the confusion matrix is normalized by the total
              number of samples;
            - if `None` (default), the confusion matrix will not be normalized.

        display_labels : array-like of shape (n_classes,), default=None
            Target names used for plotting. By default, `labels` will be used
            if it is defined, otherwise the unique labels of `y_true` and
            `y_pred` will be used.

        include_values : bool, default=True
            Includes values in confusion matrix.

        xticks_rotation : {'vertical', 'horizontal'} or float, \
                default='horizontal'
            Rotation of xtick labels.

        values_format : str, default=None
            Format specification for values in confusion matrix. If `None`, the
            format specification is 'd' or '.2g' whichever is shorter.

        cmap : str or matplotlib Colormap, default='viridis'
            Colormap recognized by matplotlib.

        ax : matplotlib Axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        colorbar : bool, default=True
            Whether or not to add a colorbar to the plot.

        im_kw : dict, default=None
            Dict with keywords passed to `matplotlib.pyplot.imshow` call.

        text_kw : dict, default=None
            Dict with keywords passed to `matplotlib.pyplot.text` call.

            .. versionadded:: 1.2

        Returns
        -------
        display : :class:`~sklearn.metrics.ConfusionMatrixDisplay`

        See Also
        --------
        ConfusionMatrixDisplay.from_predictions : Plot the confusion matrix
            given the true and predicted labels.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import make_classification
        >>> from sklearn.metrics import ConfusionMatrixDisplay
        >>> from sklearn.model_selection import train_test_split
        >>> from sklearn.svm import SVC
        >>> X, y = make_classification(random_state=0)
        >>> X_train, X_test, y_train, y_test = train_test_split(
        ...         X, y, random_state=0)
        >>> clf = SVC(random_state=0)
        >>> clf.fit(X_train, y_train)
        SVC(random_state=0)
        >>> ConfusionMatrixDisplay.from_estimator(
        ...     clf, X_test, y_test)
        <...>
        >>> plt.show()
        """
        method_name = f"{cls.__name__}.from_estimator"
        check_matplotlib_support(method_name)
        if not is_classifier(estimator):
            raise ValueError(f"{method_name} only supports classifiers")
        y_pred = estimator.predict(X)

        return cls.from_predictions(
            y,
            y_pred,
            sample_weight=sample_weight,
            labels=labels,
            normalize=normalize,
            display_labels=display_labels,
            include_values=include_values,
            cmap=cmap,
            ax=ax,
            xticks_rotation=xticks_rotation,
            values_format=values_format,
            colorbar=colorbar,
            im_kw=im_kw,
            text_kw=text_kw,
        )

    @classmethod
    def from_predictions(
        cls,
        y_true,
        y_pred,
        *,
        labels=None,
        sample_weight=None,
        normalize=None,
        display_labels=None,
        include_values=True,
        xticks_rotation="horizontal",
        values_format=None,
        cmap="viridis",
        ax=None,
        colorbar=True,
        im_kw=None,
        text_kw=None,
    ):
        """Plot Confusion Matrix given true and predicted labels.

        Read more in the :ref:`User Guide <confusion_matrix>`.

        .. versionadded:: 1.0

        Parameters
        ----------
        y_true : array-like of shape (n_samples,)
            True labels.

        y_pred : array-like of shape (n_samples,)
            The predicted labels given by the method `predict` of an
            classifier.

        labels : array-like of shape (n_classes,), default=None
            List of labels to index the confusion matrix. This may be used to
            reorder or select a subset of labels. If `None` is given, those
            that appear at least once in `y_true` or `y_pred` are used in
            sorted order.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        normalize : {'true', 'pred', 'all'}, default=None
            Either to normalize the counts display in the matrix:

            - if `'true'`, the confusion matrix is normalized over the true
              conditions (e.g. rows);
            - if `'pred'`, the confusion matrix is normalized over the
              predicted conditions (e.g. columns);
            - if `'all'`, the confusion matrix is normalized by the total
              number of samples;
            - if `None` (default), the confusion matrix will not be normalized.

        display_labels : array-like of shape (n_classes,), default=None
            Target names used for plotting. By default, `labels` will be used
            if it is defined, otherwise the unique labels of `y_true` and
            `y_pred` will be used.

        include_values : bool, default=True
            Includes values in confusion matrix.

        xticks_rotation : {'vertical', 'horizontal'} or float, \
                default='horizontal'
            Rotation of xtick labels.

        values_format : str, default=None
            Format specification for values in confusion matrix. If `None`, the
            format specification is 'd' or '.2g' whichever is shorter.

        cmap : str or matplotlib Colormap, default='viridis'
            Colormap recognized by matplotlib.

        ax : matplotlib Axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        colorbar : bool, default=True
            Whether or not to add a colorbar to the plot.

        im_kw : dict, default=None
            Dict with keywords passed to `matplotlib.pyplot.imshow` call.

        text_kw : dict, default=None
            Dict with keywords passed to `matplotlib.pyplot.text` call.

            .. versionadded:: 1.2

        Returns
        -------
        display : :class:`~sklearn.metrics.ConfusionMatrixDisplay`

        See Also
        --------
        ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix
            given an estimator, the data, and the label.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import make_classification
        >>> from sklearn.metrics import ConfusionMatrixDisplay
        >>> from sklearn.model_selection import train_test_split
        >>> from sklearn.svm import SVC
        >>> X, y = make_classification(random_state=0)
        >>> X_train, X_test, y_train, y_test = train_test_split(
        ...         X, y, random_state=0)
        >>> clf = SVC(random_state=0)
        >>> clf.fit(X_train, y_train)
        SVC(random_state=0)
        >>> y_pred = clf.predict(X_test)
        >>> ConfusionMatrixDisplay.from_predictions(
        ...    y_test, y_pred)
        <...>
        >>> plt.show()
        """
        check_matplotlib_support(f"{cls.__name__}.from_predictions")

        if display_labels is None:
            if labels is None:
                display_labels = unique_labels(y_true, y_pred)
            else:
                display_labels = labels

        cm = confusion_matrix(
            y_true,
            y_pred,
            sample_weight=sample_weight,
            labels=labels,
            normalize=normalize,
        )

        disp = cls(confusion_matrix=cm, display_labels=display_labels)

        return disp.plot(
            include_values=include_values,
            cmap=cmap,
            ax=ax,
            xticks_rotation=xticks_rotation,
            values_format=values_format,
            colorbar=colorbar,
            im_kw=im_kw,
            text_kw=text_kw,
        )