1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
import scipy as sp
from .base import _get_response
from .. import det_curve
from .._base import _check_pos_label_consistency
from ...utils import check_matplotlib_support
class DetCurveDisplay:
"""DET curve visualization.
It is recommend to use :func:`~sklearn.metrics.DetCurveDisplay.from_estimator`
or :func:`~sklearn.metrics.DetCurveDisplay.from_predictions` to create a
visualizer. All parameters are stored as attributes.
Read more in the :ref:`User Guide <visualizations>`.
.. versionadded:: 0.24
Parameters
----------
fpr : ndarray
False positive rate.
fnr : ndarray
False negative rate.
estimator_name : str, default=None
Name of estimator. If None, the estimator name is not shown.
pos_label : str or int, default=None
The label of the positive class.
Attributes
----------
line_ : matplotlib Artist
DET Curve.
ax_ : matplotlib Axes
Axes with DET Curve.
figure_ : matplotlib Figure
Figure containing the curve.
See Also
--------
det_curve : Compute error rates for different probability thresholds.
DetCurveDisplay.from_estimator : Plot DET curve given an estimator and
some data.
DetCurveDisplay.from_predictions : Plot DET curve given the true and
predicted labels.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import det_curve, DetCurveDisplay
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.svm import SVC
>>> X, y = make_classification(n_samples=1000, random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.4, random_state=0)
>>> clf = SVC(random_state=0).fit(X_train, y_train)
>>> y_pred = clf.decision_function(X_test)
>>> fpr, fnr, _ = det_curve(y_test, y_pred)
>>> display = DetCurveDisplay(
... fpr=fpr, fnr=fnr, estimator_name="SVC"
... )
>>> display.plot()
<...>
>>> plt.show()
"""
def __init__(self, *, fpr, fnr, estimator_name=None, pos_label=None):
self.fpr = fpr
self.fnr = fnr
self.estimator_name = estimator_name
self.pos_label = pos_label
@classmethod
def from_estimator(
cls,
estimator,
X,
y,
*,
sample_weight=None,
response_method="auto",
pos_label=None,
name=None,
ax=None,
**kwargs,
):
"""Plot DET curve given an estimator and data.
Read more in the :ref:`User Guide <visualizations>`.
.. versionadded:: 1.0
Parameters
----------
estimator : estimator instance
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
in which the last estimator is a classifier.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
response_method : {'predict_proba', 'decision_function', 'auto'} \
default='auto'
Specifies whether to use :term:`predict_proba` or
:term:`decision_function` as the predicted target response. If set
to 'auto', :term:`predict_proba` is tried first and if it does not
exist :term:`decision_function` is tried next.
pos_label : str or int, default=None
The label of the positive class. When `pos_label=None`, if `y_true`
is in {-1, 1} or {0, 1}, `pos_label` is set to 1, otherwise an
error will be raised.
name : str, default=None
Name of DET curve for labeling. If `None`, use the name of the
estimator.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
**kwargs : dict
Additional keywords arguments passed to matplotlib `plot` function.
Returns
-------
display : :class:`~sklearn.metrics.DetCurveDisplay`
Object that stores computed values.
See Also
--------
det_curve : Compute error rates for different probability thresholds.
DetCurveDisplay.from_predictions : Plot DET curve given the true and
predicted labels.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import DetCurveDisplay
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.svm import SVC
>>> X, y = make_classification(n_samples=1000, random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.4, random_state=0)
>>> clf = SVC(random_state=0).fit(X_train, y_train)
>>> DetCurveDisplay.from_estimator(
... clf, X_test, y_test)
<...>
>>> plt.show()
"""
check_matplotlib_support(f"{cls.__name__}.from_estimator")
name = estimator.__class__.__name__ if name is None else name
y_pred, pos_label = _get_response(
X,
estimator,
response_method,
pos_label=pos_label,
)
return cls.from_predictions(
y_true=y,
y_pred=y_pred,
sample_weight=sample_weight,
name=name,
ax=ax,
pos_label=pos_label,
**kwargs,
)
@classmethod
def from_predictions(
cls,
y_true,
y_pred,
*,
sample_weight=None,
pos_label=None,
name=None,
ax=None,
**kwargs,
):
"""Plot the DET curve given the true and predicted labels.
Read more in the :ref:`User Guide <visualizations>`.
.. versionadded:: 1.0
Parameters
----------
y_true : array-like of shape (n_samples,)
True labels.
y_pred : array-like of shape (n_samples,)
Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by `decision_function` on some classifiers).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
pos_label : str or int, default=None
The label of the positive class. When `pos_label=None`, if `y_true`
is in {-1, 1} or {0, 1}, `pos_label` is set to 1, otherwise an
error will be raised.
name : str, default=None
Name of DET curve for labeling. If `None`, name will be set to
`"Classifier"`.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
**kwargs : dict
Additional keywords arguments passed to matplotlib `plot` function.
Returns
-------
display : :class:`~sklearn.metrics.DetCurveDisplay`
Object that stores computed values.
See Also
--------
det_curve : Compute error rates for different probability thresholds.
DetCurveDisplay.from_estimator : Plot DET curve given an estimator and
some data.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import DetCurveDisplay
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.svm import SVC
>>> X, y = make_classification(n_samples=1000, random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.4, random_state=0)
>>> clf = SVC(random_state=0).fit(X_train, y_train)
>>> y_pred = clf.decision_function(X_test)
>>> DetCurveDisplay.from_predictions(
... y_test, y_pred)
<...>
>>> plt.show()
"""
check_matplotlib_support(f"{cls.__name__}.from_predictions")
fpr, fnr, _ = det_curve(
y_true,
y_pred,
pos_label=pos_label,
sample_weight=sample_weight,
)
pos_label = _check_pos_label_consistency(pos_label, y_true)
name = "Classifier" if name is None else name
viz = DetCurveDisplay(
fpr=fpr,
fnr=fnr,
estimator_name=name,
pos_label=pos_label,
)
return viz.plot(ax=ax, name=name, **kwargs)
def plot(self, ax=None, *, name=None, **kwargs):
"""Plot visualization.
Parameters
----------
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
name : str, default=None
Name of DET curve for labeling. If `None`, use `estimator_name` if
it is not `None`, otherwise no labeling is shown.
**kwargs : dict
Additional keywords arguments passed to matplotlib `plot` function.
Returns
-------
display : :class:`~sklearn.metrics.plot.DetCurveDisplay`
Object that stores computed values.
"""
check_matplotlib_support("DetCurveDisplay.plot")
name = self.estimator_name if name is None else name
line_kwargs = {} if name is None else {"label": name}
line_kwargs.update(**kwargs)
import matplotlib.pyplot as plt
if ax is None:
_, ax = plt.subplots()
(self.line_,) = ax.plot(
sp.stats.norm.ppf(self.fpr),
sp.stats.norm.ppf(self.fnr),
**line_kwargs,
)
info_pos_label = (
f" (Positive label: {self.pos_label})" if self.pos_label is not None else ""
)
xlabel = "False Positive Rate" + info_pos_label
ylabel = "False Negative Rate" + info_pos_label
ax.set(xlabel=xlabel, ylabel=ylabel)
if "label" in line_kwargs:
ax.legend(loc="lower right")
ticks = [0.001, 0.01, 0.05, 0.20, 0.5, 0.80, 0.95, 0.99, 0.999]
tick_locations = sp.stats.norm.ppf(ticks)
tick_labels = [
"{:.0%}".format(s) if (100 * s).is_integer() else "{:.1%}".format(s)
for s in ticks
]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels)
ax.set_xlim(-3, 3)
ax.set_yticks(tick_locations)
ax.set_yticklabels(tick_labels)
ax.set_ylim(-3, 3)
self.ax_ = ax
self.figure_ = ax.figure
return self
|