1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
|
"""
The :mod:`sklearn.metrics.scorer` submodule implements a flexible
interface for model selection and evaluation using
arbitrary score functions.
A scorer object is a callable that can be passed to
:class:`~sklearn.model_selection.GridSearchCV` or
:func:`sklearn.model_selection.cross_val_score` as the ``scoring``
parameter, to specify how a model should be evaluated.
The signature of the call is ``(estimator, X, y)`` where ``estimator``
is the model to be evaluated, ``X`` is the test data and ``y`` is the
ground truth labeling (or ``None`` in the case of unsupervised models).
"""
# Authors: Andreas Mueller <amueller@ais.uni-bonn.de>
# Lars Buitinck
# Arnaud Joly <arnaud.v.joly@gmail.com>
# License: Simplified BSD
from collections.abc import Iterable
from functools import partial
from collections import Counter
from traceback import format_exc
import numpy as np
import copy
import warnings
from . import (
r2_score,
median_absolute_error,
max_error,
mean_absolute_error,
mean_squared_error,
mean_squared_log_error,
mean_poisson_deviance,
mean_gamma_deviance,
accuracy_score,
top_k_accuracy_score,
f1_score,
roc_auc_score,
average_precision_score,
precision_score,
recall_score,
log_loss,
balanced_accuracy_score,
explained_variance_score,
brier_score_loss,
jaccard_score,
mean_absolute_percentage_error,
matthews_corrcoef,
class_likelihood_ratios,
)
from .cluster import adjusted_rand_score
from .cluster import rand_score
from .cluster import homogeneity_score
from .cluster import completeness_score
from .cluster import v_measure_score
from .cluster import mutual_info_score
from .cluster import adjusted_mutual_info_score
from .cluster import normalized_mutual_info_score
from .cluster import fowlkes_mallows_score
from ..utils.multiclass import type_of_target
from ..base import is_regressor
def _cached_call(cache, estimator, method, *args, **kwargs):
"""Call estimator with method and args and kwargs."""
if cache is None:
return getattr(estimator, method)(*args, **kwargs)
try:
return cache[method]
except KeyError:
result = getattr(estimator, method)(*args, **kwargs)
cache[method] = result
return result
class _MultimetricScorer:
"""Callable for multimetric scoring used to avoid repeated calls
to `predict_proba`, `predict`, and `decision_function`.
`_MultimetricScorer` will return a dictionary of scores corresponding to
the scorers in the dictionary. Note that `_MultimetricScorer` can be
created with a dictionary with one key (i.e. only one actual scorer).
Parameters
----------
scorers : dict
Dictionary mapping names to callable scorers.
raise_exc : bool, default=True
Whether to raise the exception in `__call__` or not. If set to `False`
a formatted string of the exception details is passed as result of
the failing scorer.
"""
def __init__(self, *, scorers, raise_exc=True):
self._scorers = scorers
self._raise_exc = raise_exc
def __call__(self, estimator, *args, **kwargs):
"""Evaluate predicted target values."""
scores = {}
cache = {} if self._use_cache(estimator) else None
cached_call = partial(_cached_call, cache)
for name, scorer in self._scorers.items():
try:
if isinstance(scorer, _BaseScorer):
score = scorer._score(cached_call, estimator, *args, **kwargs)
else:
score = scorer(estimator, *args, **kwargs)
scores[name] = score
except Exception as e:
if self._raise_exc:
raise e
else:
scores[name] = format_exc()
return scores
def _use_cache(self, estimator):
"""Return True if using a cache is beneficial.
Caching may be beneficial when one of these conditions holds:
- `_ProbaScorer` will be called twice.
- `_PredictScorer` will be called twice.
- `_ThresholdScorer` will be called twice.
- `_ThresholdScorer` and `_PredictScorer` are called and
estimator is a regressor.
- `_ThresholdScorer` and `_ProbaScorer` are called and
estimator does not have a `decision_function` attribute.
"""
if len(self._scorers) == 1: # Only one scorer
return False
counter = Counter([type(v) for v in self._scorers.values()])
if any(
counter[known_type] > 1
for known_type in [_PredictScorer, _ProbaScorer, _ThresholdScorer]
):
return True
if counter[_ThresholdScorer]:
if is_regressor(estimator) and counter[_PredictScorer]:
return True
elif counter[_ProbaScorer] and not hasattr(estimator, "decision_function"):
return True
return False
class _BaseScorer:
def __init__(self, score_func, sign, kwargs):
self._kwargs = kwargs
self._score_func = score_func
self._sign = sign
@staticmethod
def _check_pos_label(pos_label, classes):
if pos_label not in list(classes):
raise ValueError(f"pos_label={pos_label} is not a valid label: {classes}")
def _select_proba_binary(self, y_pred, classes):
"""Select the column of the positive label in `y_pred` when
probabilities are provided.
Parameters
----------
y_pred : ndarray of shape (n_samples, n_classes)
The prediction given by `predict_proba`.
classes : ndarray of shape (n_classes,)
The class labels for the estimator.
Returns
-------
y_pred : ndarray of shape (n_samples,)
Probability predictions of the positive class.
"""
if y_pred.shape[1] == 2:
pos_label = self._kwargs.get("pos_label", classes[1])
self._check_pos_label(pos_label, classes)
col_idx = np.flatnonzero(classes == pos_label)[0]
return y_pred[:, col_idx]
err_msg = (
f"Got predict_proba of shape {y_pred.shape}, but need "
f"classifier with two classes for {self._score_func.__name__} "
"scoring"
)
raise ValueError(err_msg)
def __repr__(self):
kwargs_string = "".join(
[", %s=%s" % (str(k), str(v)) for k, v in self._kwargs.items()]
)
return "make_scorer(%s%s%s%s)" % (
self._score_func.__name__,
"" if self._sign > 0 else ", greater_is_better=False",
self._factory_args(),
kwargs_string,
)
def __call__(self, estimator, X, y_true, sample_weight=None):
"""Evaluate predicted target values for X relative to y_true.
Parameters
----------
estimator : object
Trained estimator to use for scoring. Must have a predict_proba
method; the output of that is used to compute the score.
X : {array-like, sparse matrix}
Test data that will be fed to estimator.predict.
y_true : array-like
Gold standard target values for X.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
Score function applied to prediction of estimator on X.
"""
return self._score(
partial(_cached_call, None),
estimator,
X,
y_true,
sample_weight=sample_weight,
)
def _factory_args(self):
"""Return non-default make_scorer arguments for repr."""
return ""
class _PredictScorer(_BaseScorer):
def _score(self, method_caller, estimator, X, y_true, sample_weight=None):
"""Evaluate predicted target values for X relative to y_true.
Parameters
----------
method_caller : callable
Returns predictions given an estimator, method name, and other
arguments, potentially caching results.
estimator : object
Trained estimator to use for scoring. Must have a `predict`
method; the output of that is used to compute the score.
X : {array-like, sparse matrix}
Test data that will be fed to estimator.predict.
y_true : array-like
Gold standard target values for X.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
Score function applied to prediction of estimator on X.
"""
y_pred = method_caller(estimator, "predict", X)
if sample_weight is not None:
return self._sign * self._score_func(
y_true, y_pred, sample_weight=sample_weight, **self._kwargs
)
else:
return self._sign * self._score_func(y_true, y_pred, **self._kwargs)
class _ProbaScorer(_BaseScorer):
def _score(self, method_caller, clf, X, y, sample_weight=None):
"""Evaluate predicted probabilities for X relative to y_true.
Parameters
----------
method_caller : callable
Returns predictions given an estimator, method name, and other
arguments, potentially caching results.
clf : object
Trained classifier to use for scoring. Must have a `predict_proba`
method; the output of that is used to compute the score.
X : {array-like, sparse matrix}
Test data that will be fed to clf.predict_proba.
y : array-like
Gold standard target values for X. These must be class labels,
not probabilities.
sample_weight : array-like, default=None
Sample weights.
Returns
-------
score : float
Score function applied to prediction of estimator on X.
"""
y_type = type_of_target(y)
y_pred = method_caller(clf, "predict_proba", X)
if y_type == "binary" and y_pred.shape[1] <= 2:
# `y_type` could be equal to "binary" even in a multi-class
# problem: (when only 2 class are given to `y_true` during scoring)
# Thus, we need to check for the shape of `y_pred`.
y_pred = self._select_proba_binary(y_pred, clf.classes_)
if sample_weight is not None:
return self._sign * self._score_func(
y, y_pred, sample_weight=sample_weight, **self._kwargs
)
else:
return self._sign * self._score_func(y, y_pred, **self._kwargs)
def _factory_args(self):
return ", needs_proba=True"
class _ThresholdScorer(_BaseScorer):
def _score(self, method_caller, clf, X, y, sample_weight=None):
"""Evaluate decision function output for X relative to y_true.
Parameters
----------
method_caller : callable
Returns predictions given an estimator, method name, and other
arguments, potentially caching results.
clf : object
Trained classifier to use for scoring. Must have either a
decision_function method or a predict_proba method; the output of
that is used to compute the score.
X : {array-like, sparse matrix}
Test data that will be fed to clf.decision_function or
clf.predict_proba.
y : array-like
Gold standard target values for X. These must be class labels,
not decision function values.
sample_weight : array-like, default=None
Sample weights.
Returns
-------
score : float
Score function applied to prediction of estimator on X.
"""
y_type = type_of_target(y)
if y_type not in ("binary", "multilabel-indicator"):
raise ValueError("{0} format is not supported".format(y_type))
if is_regressor(clf):
y_pred = method_caller(clf, "predict", X)
else:
try:
y_pred = method_caller(clf, "decision_function", X)
if isinstance(y_pred, list):
# For multi-output multi-class estimator
y_pred = np.vstack([p for p in y_pred]).T
elif y_type == "binary" and "pos_label" in self._kwargs:
self._check_pos_label(self._kwargs["pos_label"], clf.classes_)
if self._kwargs["pos_label"] == clf.classes_[0]:
# The implicit positive class of the binary classifier
# does not match `pos_label`: we need to invert the
# predictions
y_pred *= -1
except (NotImplementedError, AttributeError):
y_pred = method_caller(clf, "predict_proba", X)
if y_type == "binary":
y_pred = self._select_proba_binary(y_pred, clf.classes_)
elif isinstance(y_pred, list):
y_pred = np.vstack([p[:, -1] for p in y_pred]).T
if sample_weight is not None:
return self._sign * self._score_func(
y, y_pred, sample_weight=sample_weight, **self._kwargs
)
else:
return self._sign * self._score_func(y, y_pred, **self._kwargs)
def _factory_args(self):
return ", needs_threshold=True"
def get_scorer(scoring):
"""Get a scorer from string.
Read more in the :ref:`User Guide <scoring_parameter>`.
:func:`~sklearn.metrics.get_scorer_names` can be used to retrieve the names
of all available scorers.
Parameters
----------
scoring : str or callable
Scoring method as string. If callable it is returned as is.
Returns
-------
scorer : callable
The scorer.
Notes
-----
When passed a string, this function always returns a copy of the scorer
object. Calling `get_scorer` twice for the same scorer results in two
separate scorer objects.
"""
if isinstance(scoring, str):
try:
scorer = copy.deepcopy(_SCORERS[scoring])
except KeyError:
raise ValueError(
"%r is not a valid scoring value. "
"Use sklearn.metrics.get_scorer_names() "
"to get valid options." % scoring
)
else:
scorer = scoring
return scorer
def _passthrough_scorer(estimator, *args, **kwargs):
"""Function that wraps estimator.score"""
return estimator.score(*args, **kwargs)
def check_scoring(estimator, scoring=None, *, allow_none=False):
"""Determine scorer from user options.
A TypeError will be thrown if the estimator cannot be scored.
Parameters
----------
estimator : estimator object implementing 'fit'
The object to use to fit the data.
scoring : str or callable, default=None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
If None, the provided estimator object's `score` method is used.
allow_none : bool, default=False
If no scoring is specified and the estimator has no score function, we
can either return None or raise an exception.
Returns
-------
scoring : callable
A scorer callable object / function with signature
``scorer(estimator, X, y)``.
"""
if not hasattr(estimator, "fit"):
raise TypeError(
"estimator should be an estimator implementing 'fit' method, %r was passed"
% estimator
)
if isinstance(scoring, str):
return get_scorer(scoring)
elif callable(scoring):
# Heuristic to ensure user has not passed a metric
module = getattr(scoring, "__module__", None)
if (
hasattr(module, "startswith")
and module.startswith("sklearn.metrics.")
and not module.startswith("sklearn.metrics._scorer")
and not module.startswith("sklearn.metrics.tests.")
):
raise ValueError(
"scoring value %r looks like it is a metric "
"function rather than a scorer. A scorer should "
"require an estimator as its first parameter. "
"Please use `make_scorer` to convert a metric "
"to a scorer." % scoring
)
return get_scorer(scoring)
elif scoring is None:
if hasattr(estimator, "score"):
return _passthrough_scorer
elif allow_none:
return None
else:
raise TypeError(
"If no scoring is specified, the estimator passed should "
"have a 'score' method. The estimator %r does not." % estimator
)
elif isinstance(scoring, Iterable):
raise ValueError(
"For evaluating multiple scores, use "
"sklearn.model_selection.cross_validate instead. "
"{0} was passed.".format(scoring)
)
else:
raise ValueError(
"scoring value should either be a callable, string or None. %r was passed"
% scoring
)
def _check_multimetric_scoring(estimator, scoring):
"""Check the scoring parameter in cases when multiple metrics are allowed.
Parameters
----------
estimator : sklearn estimator instance
The estimator for which the scoring will be applied.
scoring : list, tuple or dict
Strategy to evaluate the performance of the cross-validated model on
the test set.
The possibilities are:
- a list or tuple of unique strings;
- a callable returning a dictionary where they keys are the metric
names and the values are the metric scores;
- a dictionary with metric names as keys and callables a values.
See :ref:`multimetric_grid_search` for an example.
Returns
-------
scorers_dict : dict
A dict mapping each scorer name to its validated scorer.
"""
err_msg_generic = (
f"scoring is invalid (got {scoring!r}). Refer to the "
"scoring glossary for details: "
"https://scikit-learn.org/stable/glossary.html#term-scoring"
)
if isinstance(scoring, (list, tuple, set)):
err_msg = (
"The list/tuple elements must be unique strings of predefined scorers. "
)
try:
keys = set(scoring)
except TypeError as e:
raise ValueError(err_msg) from e
if len(keys) != len(scoring):
raise ValueError(
f"{err_msg} Duplicate elements were found in"
f" the given list. {scoring!r}"
)
elif len(keys) > 0:
if not all(isinstance(k, str) for k in keys):
if any(callable(k) for k in keys):
raise ValueError(
f"{err_msg} One or more of the elements "
"were callables. Use a dict of score "
"name mapped to the scorer callable. "
f"Got {scoring!r}"
)
else:
raise ValueError(
f"{err_msg} Non-string types were found "
f"in the given list. Got {scoring!r}"
)
scorers = {
scorer: check_scoring(estimator, scoring=scorer) for scorer in scoring
}
else:
raise ValueError(f"{err_msg} Empty list was given. {scoring!r}")
elif isinstance(scoring, dict):
keys = set(scoring)
if not all(isinstance(k, str) for k in keys):
raise ValueError(
"Non-string types were found in the keys of "
f"the given dict. scoring={scoring!r}"
)
if len(keys) == 0:
raise ValueError(f"An empty dict was passed. {scoring!r}")
scorers = {
key: check_scoring(estimator, scoring=scorer)
for key, scorer in scoring.items()
}
else:
raise ValueError(err_msg_generic)
return scorers
def make_scorer(
score_func,
*,
greater_is_better=True,
needs_proba=False,
needs_threshold=False,
**kwargs,
):
"""Make a scorer from a performance metric or loss function.
This factory function wraps scoring functions for use in
:class:`~sklearn.model_selection.GridSearchCV` and
:func:`~sklearn.model_selection.cross_val_score`.
It takes a score function, such as :func:`~sklearn.metrics.accuracy_score`,
:func:`~sklearn.metrics.mean_squared_error`,
:func:`~sklearn.metrics.adjusted_rand_score` or
:func:`~sklearn.metrics.average_precision_score`
and returns a callable that scores an estimator's output.
The signature of the call is `(estimator, X, y)` where `estimator`
is the model to be evaluated, `X` is the data and `y` is the
ground truth labeling (or `None` in the case of unsupervised models).
Read more in the :ref:`User Guide <scoring>`.
Parameters
----------
score_func : callable
Score function (or loss function) with signature
`score_func(y, y_pred, **kwargs)`.
greater_is_better : bool, default=True
Whether `score_func` is a score function (default), meaning high is
good, or a loss function, meaning low is good. In the latter case, the
scorer object will sign-flip the outcome of the `score_func`.
needs_proba : bool, default=False
Whether `score_func` requires `predict_proba` to get probability
estimates out of a classifier.
If True, for binary `y_true`, the score function is supposed to accept
a 1D `y_pred` (i.e., probability of the positive class, shape
`(n_samples,)`).
needs_threshold : bool, default=False
Whether `score_func` takes a continuous decision certainty.
This only works for binary classification using estimators that
have either a `decision_function` or `predict_proba` method.
If True, for binary `y_true`, the score function is supposed to accept
a 1D `y_pred` (i.e., probability of the positive class or the decision
function, shape `(n_samples,)`).
For example `average_precision` or the area under the roc curve
can not be computed using discrete predictions alone.
**kwargs : additional arguments
Additional parameters to be passed to `score_func`.
Returns
-------
scorer : callable
Callable object that returns a scalar score; greater is better.
Notes
-----
If `needs_proba=False` and `needs_threshold=False`, the score
function is supposed to accept the output of :term:`predict`. If
`needs_proba=True`, the score function is supposed to accept the
output of :term:`predict_proba` (For binary `y_true`, the score function is
supposed to accept probability of the positive class). If
`needs_threshold=True`, the score function is supposed to accept the
output of :term:`decision_function` or :term:`predict_proba` when
:term:`decision_function` is not present.
Examples
--------
>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> ftwo_scorer
make_scorer(fbeta_score, beta=2)
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]},
... scoring=ftwo_scorer)
"""
sign = 1 if greater_is_better else -1
if needs_proba and needs_threshold:
raise ValueError(
"Set either needs_proba or needs_threshold to True, but not both."
)
if needs_proba:
cls = _ProbaScorer
elif needs_threshold:
cls = _ThresholdScorer
else:
cls = _PredictScorer
return cls(score_func, sign, kwargs)
# Standard regression scores
explained_variance_scorer = make_scorer(explained_variance_score)
r2_scorer = make_scorer(r2_score)
max_error_scorer = make_scorer(max_error, greater_is_better=False)
neg_mean_squared_error_scorer = make_scorer(mean_squared_error, greater_is_better=False)
neg_mean_squared_log_error_scorer = make_scorer(
mean_squared_log_error, greater_is_better=False
)
neg_mean_absolute_error_scorer = make_scorer(
mean_absolute_error, greater_is_better=False
)
neg_mean_absolute_percentage_error_scorer = make_scorer(
mean_absolute_percentage_error, greater_is_better=False
)
neg_median_absolute_error_scorer = make_scorer(
median_absolute_error, greater_is_better=False
)
neg_root_mean_squared_error_scorer = make_scorer(
mean_squared_error, greater_is_better=False, squared=False
)
neg_mean_poisson_deviance_scorer = make_scorer(
mean_poisson_deviance, greater_is_better=False
)
neg_mean_gamma_deviance_scorer = make_scorer(
mean_gamma_deviance, greater_is_better=False
)
# Standard Classification Scores
accuracy_scorer = make_scorer(accuracy_score)
balanced_accuracy_scorer = make_scorer(balanced_accuracy_score)
matthews_corrcoef_scorer = make_scorer(matthews_corrcoef)
def positive_likelihood_ratio(y_true, y_pred):
return class_likelihood_ratios(y_true, y_pred)[0]
def negative_likelihood_ratio(y_true, y_pred):
return class_likelihood_ratios(y_true, y_pred)[1]
positive_likelihood_ratio_scorer = make_scorer(positive_likelihood_ratio)
neg_negative_likelihood_ratio_scorer = make_scorer(
negative_likelihood_ratio, greater_is_better=False
)
# Score functions that need decision values
top_k_accuracy_scorer = make_scorer(
top_k_accuracy_score, greater_is_better=True, needs_threshold=True
)
roc_auc_scorer = make_scorer(
roc_auc_score, greater_is_better=True, needs_threshold=True
)
average_precision_scorer = make_scorer(average_precision_score, needs_threshold=True)
roc_auc_ovo_scorer = make_scorer(roc_auc_score, needs_proba=True, multi_class="ovo")
roc_auc_ovo_weighted_scorer = make_scorer(
roc_auc_score, needs_proba=True, multi_class="ovo", average="weighted"
)
roc_auc_ovr_scorer = make_scorer(roc_auc_score, needs_proba=True, multi_class="ovr")
roc_auc_ovr_weighted_scorer = make_scorer(
roc_auc_score, needs_proba=True, multi_class="ovr", average="weighted"
)
# Score function for probabilistic classification
neg_log_loss_scorer = make_scorer(log_loss, greater_is_better=False, needs_proba=True)
neg_brier_score_scorer = make_scorer(
brier_score_loss, greater_is_better=False, needs_proba=True
)
brier_score_loss_scorer = make_scorer(
brier_score_loss, greater_is_better=False, needs_proba=True
)
# Clustering scores
adjusted_rand_scorer = make_scorer(adjusted_rand_score)
rand_scorer = make_scorer(rand_score)
homogeneity_scorer = make_scorer(homogeneity_score)
completeness_scorer = make_scorer(completeness_score)
v_measure_scorer = make_scorer(v_measure_score)
mutual_info_scorer = make_scorer(mutual_info_score)
adjusted_mutual_info_scorer = make_scorer(adjusted_mutual_info_score)
normalized_mutual_info_scorer = make_scorer(normalized_mutual_info_score)
fowlkes_mallows_scorer = make_scorer(fowlkes_mallows_score)
# TODO(1.3) Remove
class _DeprecatedScorers(dict):
"""A temporary class to deprecate SCORERS."""
def __getitem__(self, item):
warnings.warn(
"sklearn.metrics.SCORERS is deprecated and will be removed in v1.3. "
"Please use sklearn.metrics.get_scorer_names to get a list of available "
"scorers and sklearn.metrics.get_metric to get scorer.",
FutureWarning,
)
return super().__getitem__(item)
_SCORERS = dict(
explained_variance=explained_variance_scorer,
r2=r2_scorer,
max_error=max_error_scorer,
matthews_corrcoef=matthews_corrcoef_scorer,
neg_median_absolute_error=neg_median_absolute_error_scorer,
neg_mean_absolute_error=neg_mean_absolute_error_scorer,
neg_mean_absolute_percentage_error=neg_mean_absolute_percentage_error_scorer, # noqa
neg_mean_squared_error=neg_mean_squared_error_scorer,
neg_mean_squared_log_error=neg_mean_squared_log_error_scorer,
neg_root_mean_squared_error=neg_root_mean_squared_error_scorer,
neg_mean_poisson_deviance=neg_mean_poisson_deviance_scorer,
neg_mean_gamma_deviance=neg_mean_gamma_deviance_scorer,
accuracy=accuracy_scorer,
top_k_accuracy=top_k_accuracy_scorer,
roc_auc=roc_auc_scorer,
roc_auc_ovr=roc_auc_ovr_scorer,
roc_auc_ovo=roc_auc_ovo_scorer,
roc_auc_ovr_weighted=roc_auc_ovr_weighted_scorer,
roc_auc_ovo_weighted=roc_auc_ovo_weighted_scorer,
balanced_accuracy=balanced_accuracy_scorer,
average_precision=average_precision_scorer,
neg_log_loss=neg_log_loss_scorer,
neg_brier_score=neg_brier_score_scorer,
positive_likelihood_ratio=positive_likelihood_ratio_scorer,
neg_negative_likelihood_ratio=neg_negative_likelihood_ratio_scorer,
# Cluster metrics that use supervised evaluation
adjusted_rand_score=adjusted_rand_scorer,
rand_score=rand_scorer,
homogeneity_score=homogeneity_scorer,
completeness_score=completeness_scorer,
v_measure_score=v_measure_scorer,
mutual_info_score=mutual_info_scorer,
adjusted_mutual_info_score=adjusted_mutual_info_scorer,
normalized_mutual_info_score=normalized_mutual_info_scorer,
fowlkes_mallows_score=fowlkes_mallows_scorer,
)
def get_scorer_names():
"""Get the names of all available scorers.
These names can be passed to :func:`~sklearn.metrics.get_scorer` to
retrieve the scorer object.
Returns
-------
list of str
Names of all available scorers.
"""
return sorted(_SCORERS.keys())
for name, metric in [
("precision", precision_score),
("recall", recall_score),
("f1", f1_score),
("jaccard", jaccard_score),
]:
_SCORERS[name] = make_scorer(metric, average="binary")
for average in ["macro", "micro", "samples", "weighted"]:
qualified_name = "{0}_{1}".format(name, average)
_SCORERS[qualified_name] = make_scorer(metric, pos_label=None, average=average)
SCORERS = _DeprecatedScorers(_SCORERS)
|