1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
|
import warnings
import numpy as np
import pytest
from sklearn.metrics.cluster import adjusted_mutual_info_score
from sklearn.metrics.cluster import adjusted_rand_score
from sklearn.metrics.cluster import rand_score
from sklearn.metrics.cluster import completeness_score
from sklearn.metrics.cluster import contingency_matrix
from sklearn.metrics.cluster import pair_confusion_matrix
from sklearn.metrics.cluster import entropy
from sklearn.metrics.cluster import expected_mutual_information
from sklearn.metrics.cluster import fowlkes_mallows_score
from sklearn.metrics.cluster import homogeneity_completeness_v_measure
from sklearn.metrics.cluster import homogeneity_score
from sklearn.metrics.cluster import mutual_info_score
from sklearn.metrics.cluster import normalized_mutual_info_score
from sklearn.metrics.cluster import v_measure_score
from sklearn.metrics.cluster._supervised import _generalized_average
from sklearn.metrics.cluster._supervised import check_clusterings
from sklearn.utils import assert_all_finite
from sklearn.utils._testing import assert_almost_equal
from numpy.testing import assert_array_equal, assert_array_almost_equal, assert_allclose
score_funcs = [
adjusted_rand_score,
rand_score,
homogeneity_score,
completeness_score,
v_measure_score,
adjusted_mutual_info_score,
normalized_mutual_info_score,
]
def test_error_messages_on_wrong_input():
for score_func in score_funcs:
expected = (
r"Found input variables with inconsistent numbers " r"of samples: \[2, 3\]"
)
with pytest.raises(ValueError, match=expected):
score_func([0, 1], [1, 1, 1])
expected = r"labels_true must be 1D: shape is \(2"
with pytest.raises(ValueError, match=expected):
score_func([[0, 1], [1, 0]], [1, 1, 1])
expected = r"labels_pred must be 1D: shape is \(2"
with pytest.raises(ValueError, match=expected):
score_func([0, 1, 0], [[1, 1], [0, 0]])
def test_generalized_average():
a, b = 1, 2
methods = ["min", "geometric", "arithmetic", "max"]
means = [_generalized_average(a, b, method) for method in methods]
assert means[0] <= means[1] <= means[2] <= means[3]
c, d = 12, 12
means = [_generalized_average(c, d, method) for method in methods]
assert means[0] == means[1] == means[2] == means[3]
def test_perfect_matches():
for score_func in score_funcs:
assert score_func([], []) == pytest.approx(1.0)
assert score_func([0], [1]) == pytest.approx(1.0)
assert score_func([0, 0, 0], [0, 0, 0]) == pytest.approx(1.0)
assert score_func([0, 1, 0], [42, 7, 42]) == pytest.approx(1.0)
assert score_func([0.0, 1.0, 0.0], [42.0, 7.0, 42.0]) == pytest.approx(1.0)
assert score_func([0.0, 1.0, 2.0], [42.0, 7.0, 2.0]) == pytest.approx(1.0)
assert score_func([0, 1, 2], [42, 7, 2]) == pytest.approx(1.0)
score_funcs_with_changing_means = [
normalized_mutual_info_score,
adjusted_mutual_info_score,
]
means = {"min", "geometric", "arithmetic", "max"}
for score_func in score_funcs_with_changing_means:
for mean in means:
assert score_func([], [], average_method=mean) == pytest.approx(1.0)
assert score_func([0], [1], average_method=mean) == pytest.approx(1.0)
assert score_func(
[0, 0, 0], [0, 0, 0], average_method=mean
) == pytest.approx(1.0)
assert score_func(
[0, 1, 0], [42, 7, 42], average_method=mean
) == pytest.approx(1.0)
assert score_func(
[0.0, 1.0, 0.0], [42.0, 7.0, 42.0], average_method=mean
) == pytest.approx(1.0)
assert score_func(
[0.0, 1.0, 2.0], [42.0, 7.0, 2.0], average_method=mean
) == pytest.approx(1.0)
assert score_func(
[0, 1, 2], [42, 7, 2], average_method=mean
) == pytest.approx(1.0)
def test_homogeneous_but_not_complete_labeling():
# homogeneous but not complete clustering
h, c, v = homogeneity_completeness_v_measure([0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 2, 2])
assert_almost_equal(h, 1.00, 2)
assert_almost_equal(c, 0.69, 2)
assert_almost_equal(v, 0.81, 2)
def test_complete_but_not_homogeneous_labeling():
# complete but not homogeneous clustering
h, c, v = homogeneity_completeness_v_measure([0, 0, 1, 1, 2, 2], [0, 0, 1, 1, 1, 1])
assert_almost_equal(h, 0.58, 2)
assert_almost_equal(c, 1.00, 2)
assert_almost_equal(v, 0.73, 2)
def test_not_complete_and_not_homogeneous_labeling():
# neither complete nor homogeneous but not so bad either
h, c, v = homogeneity_completeness_v_measure([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2])
assert_almost_equal(h, 0.67, 2)
assert_almost_equal(c, 0.42, 2)
assert_almost_equal(v, 0.52, 2)
def test_beta_parameter():
# test for when beta passed to
# homogeneity_completeness_v_measure
# and v_measure_score
beta_test = 0.2
h_test = 0.67
c_test = 0.42
v_test = (1 + beta_test) * h_test * c_test / (beta_test * h_test + c_test)
h, c, v = homogeneity_completeness_v_measure(
[0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2], beta=beta_test
)
assert_almost_equal(h, h_test, 2)
assert_almost_equal(c, c_test, 2)
assert_almost_equal(v, v_test, 2)
v = v_measure_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2], beta=beta_test)
assert_almost_equal(v, v_test, 2)
def test_non_consecutive_labels():
# regression tests for labels with gaps
h, c, v = homogeneity_completeness_v_measure([0, 0, 0, 2, 2, 2], [0, 1, 0, 1, 2, 2])
assert_almost_equal(h, 0.67, 2)
assert_almost_equal(c, 0.42, 2)
assert_almost_equal(v, 0.52, 2)
h, c, v = homogeneity_completeness_v_measure([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2])
assert_almost_equal(h, 0.67, 2)
assert_almost_equal(c, 0.42, 2)
assert_almost_equal(v, 0.52, 2)
ari_1 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2])
ari_2 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2])
assert_almost_equal(ari_1, 0.24, 2)
assert_almost_equal(ari_2, 0.24, 2)
ri_1 = rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2])
ri_2 = rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2])
assert_almost_equal(ri_1, 0.66, 2)
assert_almost_equal(ri_2, 0.66, 2)
def uniform_labelings_scores(score_func, n_samples, k_range, n_runs=10, seed=42):
# Compute score for random uniform cluster labelings
random_labels = np.random.RandomState(seed).randint
scores = np.zeros((len(k_range), n_runs))
for i, k in enumerate(k_range):
for j in range(n_runs):
labels_a = random_labels(low=0, high=k, size=n_samples)
labels_b = random_labels(low=0, high=k, size=n_samples)
scores[i, j] = score_func(labels_a, labels_b)
return scores
def test_adjustment_for_chance():
# Check that adjusted scores are almost zero on random labels
n_clusters_range = [2, 10, 50, 90]
n_samples = 100
n_runs = 10
scores = uniform_labelings_scores(
adjusted_rand_score, n_samples, n_clusters_range, n_runs
)
max_abs_scores = np.abs(scores).max(axis=1)
assert_array_almost_equal(max_abs_scores, [0.02, 0.03, 0.03, 0.02], 2)
def test_adjusted_mutual_info_score():
# Compute the Adjusted Mutual Information and test against known values
labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3])
labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2])
# Mutual information
mi = mutual_info_score(labels_a, labels_b)
assert_almost_equal(mi, 0.41022, 5)
# with provided sparse contingency
C = contingency_matrix(labels_a, labels_b, sparse=True)
mi = mutual_info_score(labels_a, labels_b, contingency=C)
assert_almost_equal(mi, 0.41022, 5)
# with provided dense contingency
C = contingency_matrix(labels_a, labels_b)
mi = mutual_info_score(labels_a, labels_b, contingency=C)
assert_almost_equal(mi, 0.41022, 5)
# Expected mutual information
n_samples = C.sum()
emi = expected_mutual_information(C, n_samples)
assert_almost_equal(emi, 0.15042, 5)
# Adjusted mutual information
ami = adjusted_mutual_info_score(labels_a, labels_b)
assert_almost_equal(ami, 0.27821, 5)
ami = adjusted_mutual_info_score([1, 1, 2, 2], [2, 2, 3, 3])
assert ami == pytest.approx(1.0)
# Test with a very large array
a110 = np.array([list(labels_a) * 110]).flatten()
b110 = np.array([list(labels_b) * 110]).flatten()
ami = adjusted_mutual_info_score(a110, b110)
assert_almost_equal(ami, 0.38, 2)
def test_expected_mutual_info_overflow():
# Test for regression where contingency cell exceeds 2**16
# leading to overflow in np.outer, resulting in EMI > 1
assert expected_mutual_information(np.array([[70000]]), 70000) <= 1
def test_int_overflow_mutual_info_fowlkes_mallows_score():
# Test overflow in mutual_info_classif and fowlkes_mallows_score
x = np.array(
[1] * (52632 + 2529)
+ [2] * (14660 + 793)
+ [3] * (3271 + 204)
+ [4] * (814 + 39)
+ [5] * (316 + 20)
)
y = np.array(
[0] * 52632
+ [1] * 2529
+ [0] * 14660
+ [1] * 793
+ [0] * 3271
+ [1] * 204
+ [0] * 814
+ [1] * 39
+ [0] * 316
+ [1] * 20
)
assert_all_finite(mutual_info_score(x, y))
assert_all_finite(fowlkes_mallows_score(x, y))
def test_entropy():
ent = entropy([0, 0, 42.0])
assert_almost_equal(ent, 0.6365141, 5)
assert_almost_equal(entropy([]), 1)
assert entropy([1, 1, 1, 1]) == 0
def test_contingency_matrix():
labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3])
labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2])
C = contingency_matrix(labels_a, labels_b)
C2 = np.histogram2d(labels_a, labels_b, bins=(np.arange(1, 5), np.arange(1, 5)))[0]
assert_array_almost_equal(C, C2)
C = contingency_matrix(labels_a, labels_b, eps=0.1)
assert_array_almost_equal(C, C2 + 0.1)
def test_contingency_matrix_sparse():
labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3])
labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2])
C = contingency_matrix(labels_a, labels_b)
C_sparse = contingency_matrix(labels_a, labels_b, sparse=True).toarray()
assert_array_almost_equal(C, C_sparse)
with pytest.raises(ValueError, match="Cannot set 'eps' when sparse=True"):
contingency_matrix(labels_a, labels_b, eps=1e-10, sparse=True)
def test_exactly_zero_info_score():
# Check numerical stability when information is exactly zero
for i in np.logspace(1, 4, 4).astype(int):
labels_a, labels_b = (np.ones(i, dtype=int), np.arange(i, dtype=int))
assert normalized_mutual_info_score(labels_a, labels_b) == pytest.approx(0.0)
assert v_measure_score(labels_a, labels_b) == pytest.approx(0.0)
assert adjusted_mutual_info_score(labels_a, labels_b) == pytest.approx(0.0)
assert normalized_mutual_info_score(labels_a, labels_b) == pytest.approx(0.0)
for method in ["min", "geometric", "arithmetic", "max"]:
assert adjusted_mutual_info_score(
labels_a, labels_b, average_method=method
) == pytest.approx(0.0)
assert normalized_mutual_info_score(
labels_a, labels_b, average_method=method
) == pytest.approx(0.0)
def test_v_measure_and_mutual_information(seed=36):
# Check relation between v_measure, entropy and mutual information
for i in np.logspace(1, 4, 4).astype(int):
random_state = np.random.RandomState(seed)
labels_a, labels_b = (
random_state.randint(0, 10, i),
random_state.randint(0, 10, i),
)
assert_almost_equal(
v_measure_score(labels_a, labels_b),
2.0
* mutual_info_score(labels_a, labels_b)
/ (entropy(labels_a) + entropy(labels_b)),
0,
)
avg = "arithmetic"
assert_almost_equal(
v_measure_score(labels_a, labels_b),
normalized_mutual_info_score(labels_a, labels_b, average_method=avg),
)
def test_fowlkes_mallows_score():
# General case
score = fowlkes_mallows_score([0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 2, 2])
assert_almost_equal(score, 4.0 / np.sqrt(12.0 * 6.0))
# Perfect match but where the label names changed
perfect_score = fowlkes_mallows_score([0, 0, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0])
assert_almost_equal(perfect_score, 1.0)
# Worst case
worst_score = fowlkes_mallows_score([0, 0, 0, 0, 0, 0], [0, 1, 2, 3, 4, 5])
assert_almost_equal(worst_score, 0.0)
def test_fowlkes_mallows_score_properties():
# handcrafted example
labels_a = np.array([0, 0, 0, 1, 1, 2])
labels_b = np.array([1, 1, 2, 2, 0, 0])
expected = 1.0 / np.sqrt((1.0 + 3.0) * (1.0 + 2.0))
# FMI = TP / sqrt((TP + FP) * (TP + FN))
score_original = fowlkes_mallows_score(labels_a, labels_b)
assert_almost_equal(score_original, expected)
# symmetric property
score_symmetric = fowlkes_mallows_score(labels_b, labels_a)
assert_almost_equal(score_symmetric, expected)
# permutation property
score_permuted = fowlkes_mallows_score((labels_a + 1) % 3, labels_b)
assert_almost_equal(score_permuted, expected)
# symmetric and permutation(both together)
score_both = fowlkes_mallows_score(labels_b, (labels_a + 2) % 3)
assert_almost_equal(score_both, expected)
@pytest.mark.parametrize(
"labels_true, labels_pred",
[
(["a"] * 6, [1, 1, 0, 0, 1, 1]),
([1] * 6, [1, 1, 0, 0, 1, 1]),
([1, 1, 0, 0, 1, 1], ["a"] * 6),
([1, 1, 0, 0, 1, 1], [1] * 6),
(["a"] * 6, ["a"] * 6),
],
)
def test_mutual_info_score_positive_constant_label(labels_true, labels_pred):
# Check that MI = 0 when one or both labelling are constant
# non-regression test for #16355
assert mutual_info_score(labels_true, labels_pred) == 0
def test_check_clustering_error():
# Test warning message for continuous values
rng = np.random.RandomState(42)
noise = rng.rand(500)
wavelength = np.linspace(0.01, 1, 500) * 1e-6
msg = (
"Clustering metrics expects discrete values but received "
"continuous values for label, and continuous values for "
"target"
)
with pytest.warns(UserWarning, match=msg):
check_clusterings(wavelength, noise)
def test_pair_confusion_matrix_fully_dispersed():
# edge case: every element is its own cluster
N = 100
clustering1 = list(range(N))
clustering2 = clustering1
expected = np.array([[N * (N - 1), 0], [0, 0]])
assert_array_equal(pair_confusion_matrix(clustering1, clustering2), expected)
def test_pair_confusion_matrix_single_cluster():
# edge case: only one cluster
N = 100
clustering1 = np.zeros((N,))
clustering2 = clustering1
expected = np.array([[0, 0], [0, N * (N - 1)]])
assert_array_equal(pair_confusion_matrix(clustering1, clustering2), expected)
def test_pair_confusion_matrix():
# regular case: different non-trivial clusterings
n = 10
N = n**2
clustering1 = np.hstack([[i + 1] * n for i in range(n)])
clustering2 = np.hstack([[i + 1] * (n + 1) for i in range(n)])[:N]
# basic quadratic implementation
expected = np.zeros(shape=(2, 2), dtype=np.int64)
for i in range(len(clustering1)):
for j in range(len(clustering2)):
if i != j:
same_cluster_1 = int(clustering1[i] == clustering1[j])
same_cluster_2 = int(clustering2[i] == clustering2[j])
expected[same_cluster_1, same_cluster_2] += 1
assert_array_equal(pair_confusion_matrix(clustering1, clustering2), expected)
@pytest.mark.parametrize(
"clustering1, clustering2",
[(list(range(100)), list(range(100))), (np.zeros((100,)), np.zeros((100,)))],
)
def test_rand_score_edge_cases(clustering1, clustering2):
# edge case 1: every element is its own cluster
# edge case 2: only one cluster
assert_allclose(rand_score(clustering1, clustering2), 1.0)
def test_rand_score():
# regular case: different non-trivial clusterings
clustering1 = [0, 0, 0, 1, 1, 1]
clustering2 = [0, 1, 0, 1, 2, 2]
# pair confusion matrix
D11 = 2 * 2 # ordered pairs (1, 3), (5, 6)
D10 = 2 * 4 # ordered pairs (1, 2), (2, 3), (4, 5), (4, 6)
D01 = 2 * 1 # ordered pair (2, 4)
D00 = 5 * 6 - D11 - D01 - D10 # the remaining pairs
# rand score
expected_numerator = D00 + D11
expected_denominator = D00 + D01 + D10 + D11
expected = expected_numerator / expected_denominator
assert_allclose(rand_score(clustering1, clustering2), expected)
def test_adjusted_rand_score_overflow():
"""Check that large amount of data will not lead to overflow in
`adjusted_rand_score`.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/20305
"""
rng = np.random.RandomState(0)
y_true = rng.randint(0, 2, 100_000, dtype=np.int8)
y_pred = rng.randint(0, 2, 100_000, dtype=np.int8)
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
adjusted_rand_score(y_true, y_pred)
@pytest.mark.parametrize("average_method", ["min", "arithmetic", "geometric", "max"])
def test_normalized_mutual_info_score_bounded(average_method):
"""Check that nmi returns a score between 0 (included) and 1 (excluded
for non-perfect match)
Non-regression test for issue #13836
"""
labels1 = [0] * 469
labels2 = [1] + labels1[1:]
labels3 = [0, 1] + labels1[2:]
# labels1 is constant. The mutual info between labels1 and any other labelling is 0.
nmi = normalized_mutual_info_score(labels1, labels2, average_method=average_method)
assert nmi == 0
# non constant, non perfect matching labels
nmi = normalized_mutual_info_score(labels2, labels3, average_method=average_method)
assert 0 <= nmi < 1
|