File: test_pairwise_distances_reduction.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (1228 lines) | stat: -rw-r--r-- 41,336 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
import itertools
import re
import warnings
from collections import defaultdict

import numpy as np
import pytest
import threadpoolctl
from math import log10, floor
from scipy.sparse import csr_matrix
from scipy.spatial.distance import cdist

from sklearn.metrics._pairwise_distances_reduction import (
    BaseDistancesReductionDispatcher,
    ArgKmin,
    RadiusNeighbors,
    sqeuclidean_row_norms,
)

from sklearn.metrics import euclidean_distances
from sklearn.utils.fixes import sp_version, parse_version
from sklearn.utils._testing import (
    assert_array_equal,
    assert_allclose,
    create_memmap_backed_data,
)

# Common supported metric between scipy.spatial.distance.cdist
# and BaseDistanceReductionDispatcher.
# This allows constructing tests to check consistency of results
# of concrete BaseDistanceReductionDispatcher on some metrics using APIs
# from scipy and numpy.
CDIST_PAIRWISE_DISTANCES_REDUCTION_COMMON_METRICS = [
    "braycurtis",
    "canberra",
    "chebyshev",
    "cityblock",
    "euclidean",
    "minkowski",
    "seuclidean",
]


def _get_metric_params_list(metric: str, n_features: int, seed: int = 1):
    """Return list of dummy DistanceMetric kwargs for tests."""

    # Distinguishing on cases not to compute unneeded datastructures.
    rng = np.random.RandomState(seed)

    if metric == "minkowski":
        minkowski_kwargs = [dict(p=1.5), dict(p=2), dict(p=3), dict(p=np.inf)]
        if sp_version >= parse_version("1.8.0.dev0"):
            # TODO: remove the test once we no longer support scipy < 1.8.0.
            # Recent scipy versions accept weights in the Minkowski metric directly:
            # type: ignore
            minkowski_kwargs.append(dict(p=3, w=rng.rand(n_features)))

        return minkowski_kwargs

    # TODO: remove this case for "wminkowski" once we no longer support scipy < 1.8.0.
    if metric == "wminkowski":
        weights = rng.random_sample(n_features)
        weights /= weights.sum()
        wminkowski_kwargs = [dict(p=1.5, w=weights)]
        if sp_version < parse_version("1.8.0.dev0"):
            # wminkowski was removed in scipy 1.8.0 but should work for previous
            # versions.
            wminkowski_kwargs.append(dict(p=3, w=rng.rand(n_features)))
        return wminkowski_kwargs

    if metric == "seuclidean":
        return [dict(V=rng.rand(n_features))]

    # Case of: "euclidean", "manhattan", "chebyshev", "haversine" or any other metric.
    # In those cases, no kwargs is needed.
    return [{}]


def assert_argkmin_results_equality(ref_dist, dist, ref_indices, indices, rtol=1e-7):
    assert_array_equal(
        ref_indices,
        indices,
        err_msg="Query vectors have different neighbors' indices",
    )
    assert_allclose(
        ref_dist,
        dist,
        err_msg="Query vectors have different neighbors' distances",
        rtol=rtol,
    )


def relative_rounding(scalar, n_significant_digits):
    """Round a scalar to a number of significant digits relatively to its value."""
    if scalar == 0:
        return 0.0
    magnitude = int(floor(log10(abs(scalar)))) + 1
    return round(scalar, n_significant_digits - magnitude)


def test_relative_rounding():

    assert relative_rounding(0, 1) == 0.0
    assert relative_rounding(0, 10) == 0.0
    assert relative_rounding(0, 123456) == 0.0

    assert relative_rounding(123456789, 0) == 0
    assert relative_rounding(123456789, 2) == 120000000
    assert relative_rounding(123456789, 3) == 123000000
    assert relative_rounding(123456789, 10) == 123456789
    assert relative_rounding(123456789, 20) == 123456789

    assert relative_rounding(1.23456789, 2) == 1.2
    assert relative_rounding(1.23456789, 3) == 1.23
    assert relative_rounding(1.23456789, 10) == 1.23456789

    assert relative_rounding(123.456789, 3) == 123.0
    assert relative_rounding(123.456789, 9) == 123.456789
    assert relative_rounding(123.456789, 10) == 123.456789


def assert_argkmin_results_quasi_equality(
    ref_dist,
    dist,
    ref_indices,
    indices,
    rtol=1e-4,
):
    """Assert that argkmin results are valid up to:
      - relative tolerance on computed distance values
      - permutations of indices for distances values that differ up to
        a precision level

    To be used for testing neighbors queries on float32 datasets: we
    accept neighbors rank swaps only if they are caused by small
    rounding errors on the distance computations.
    """
    is_sorted = lambda a: np.all(a[:-1] <= a[1:])

    n_significant_digits = -(int(floor(log10(abs(rtol)))) + 1)

    assert (
        ref_dist.shape == dist.shape == ref_indices.shape == indices.shape
    ), "Arrays of results have various shapes."

    n_queries, n_neighbors = ref_dist.shape

    # Asserting equality results one row at a time
    for query_idx in range(n_queries):
        ref_dist_row = ref_dist[query_idx]
        dist_row = dist[query_idx]

        assert is_sorted(
            ref_dist_row
        ), f"Reference distances aren't sorted on row {query_idx}"
        assert is_sorted(dist_row), f"Distances aren't sorted on row {query_idx}"

        assert_allclose(ref_dist_row, dist_row, rtol=rtol)

        ref_indices_row = ref_indices[query_idx]
        indices_row = indices[query_idx]

        # Grouping indices by distances using sets on a rounded distances up
        # to a given number of decimals of significant digits derived from rtol.
        reference_neighbors_groups = defaultdict(set)
        effective_neighbors_groups = defaultdict(set)

        for neighbor_rank in range(n_neighbors):
            rounded_dist = relative_rounding(
                ref_dist_row[neighbor_rank],
                n_significant_digits=n_significant_digits,
            )
            reference_neighbors_groups[rounded_dist].add(ref_indices_row[neighbor_rank])
            effective_neighbors_groups[rounded_dist].add(indices_row[neighbor_rank])

        # Asserting equality of groups (sets) for each distance
        msg = (
            f"Neighbors indices for query {query_idx} are not matching "
            f"when rounding distances at {n_significant_digits} significant digits "
            f"derived from rtol={rtol:.1e}"
        )
        for rounded_distance in reference_neighbors_groups.keys():
            assert (
                reference_neighbors_groups[rounded_distance]
                == effective_neighbors_groups[rounded_distance]
            ), msg


def assert_radius_neighbors_results_equality(
    ref_dist, dist, ref_indices, indices, radius
):
    # We get arrays of arrays and we need to check for individual pairs
    for i in range(ref_dist.shape[0]):
        assert (ref_dist[i] <= radius).all()
        assert_array_equal(
            ref_indices[i],
            indices[i],
            err_msg=f"Query vector #{i} has different neighbors' indices",
        )
        assert_allclose(
            ref_dist[i],
            dist[i],
            err_msg=f"Query vector #{i} has different neighbors' distances",
            rtol=1e-7,
        )


def assert_radius_neighbors_results_quasi_equality(
    ref_dist,
    dist,
    ref_indices,
    indices,
    radius,
    rtol=1e-4,
):
    """Assert that radius neighborhood results are valid up to:
      - relative tolerance on computed distance values
      - permutations of indices for distances values that differ up to
        a precision level
      - missing or extra last elements if their distance is
        close to the radius

    To be used for testing neighbors queries on float32 datasets: we
    accept neighbors rank swaps only if they are caused by small
    rounding errors on the distance computations.

    Input arrays must be sorted w.r.t distances.
    """
    is_sorted = lambda a: np.all(a[:-1] <= a[1:])

    n_significant_digits = -(int(floor(log10(abs(rtol)))) + 1)

    assert (
        len(ref_dist) == len(dist) == len(ref_indices) == len(indices)
    ), "Arrays of results have various lengths."

    n_queries = len(ref_dist)

    # Asserting equality of results one vector at a time
    for query_idx in range(n_queries):

        ref_dist_row = ref_dist[query_idx]
        dist_row = dist[query_idx]

        assert is_sorted(
            ref_dist_row
        ), f"Reference distances aren't sorted on row {query_idx}"
        assert is_sorted(dist_row), f"Distances aren't sorted on row {query_idx}"

        # Vectors' lengths might be different due to small
        # numerical differences of distance w.r.t the `radius` threshold.
        largest_row = ref_dist_row if len(ref_dist_row) > len(dist_row) else dist_row

        # For the longest distances vector, we check that last extra elements
        # that aren't present in the other vector are all in: [radius ± rtol]
        min_length = min(len(ref_dist_row), len(dist_row))
        last_extra_elements = largest_row[min_length:]
        if last_extra_elements.size > 0:
            assert np.all(radius - rtol <= last_extra_elements <= radius + rtol), (
                f"The last extra elements ({last_extra_elements}) aren't in [radius ±"
                f" rtol]=[{radius} ± {rtol}]"
            )

        # We truncate the neighbors results list on the smallest length to
        # be able to compare them, ignoring the elements checked above.
        ref_dist_row = ref_dist_row[:min_length]
        dist_row = dist_row[:min_length]

        assert_allclose(ref_dist_row, dist_row, rtol=rtol)

        ref_indices_row = ref_indices[query_idx]
        indices_row = indices[query_idx]

        # Grouping indices by distances using sets on a rounded distances up
        # to a given number of significant digits derived from rtol.
        reference_neighbors_groups = defaultdict(set)
        effective_neighbors_groups = defaultdict(set)

        for neighbor_rank in range(min_length):
            rounded_dist = relative_rounding(
                ref_dist_row[neighbor_rank],
                n_significant_digits=n_significant_digits,
            )
            reference_neighbors_groups[rounded_dist].add(ref_indices_row[neighbor_rank])
            effective_neighbors_groups[rounded_dist].add(indices_row[neighbor_rank])

        # Asserting equality of groups (sets) for each distance
        msg = (
            f"Neighbors indices for query {query_idx} are not matching "
            f"when rounding distances at {n_significant_digits} significant digits "
            f"derived from rtol={rtol:.1e}"
        )
        for rounded_distance in reference_neighbors_groups.keys():
            assert (
                reference_neighbors_groups[rounded_distance]
                == effective_neighbors_groups[rounded_distance]
            ), msg


ASSERT_RESULT = {
    # In the case of 64bit, we test for exact equality of the results rankings
    # and standard tolerance levels for the computed distance values.
    #
    # XXX: Note that in the future we might be interested in using quasi equality
    # checks also for float64 data (with a larger number of significant digits)
    # as the tests could be unstable because of numerically tied distances on
    # some datasets (e.g. uniform grids).
    (ArgKmin, np.float64): assert_argkmin_results_equality,
    (
        RadiusNeighbors,
        np.float64,
    ): assert_radius_neighbors_results_equality,
    # In the case of 32bit, indices can be permuted due to small difference
    # in the computations of their associated distances, hence we test equality of
    # results up to valid permutations.
    (ArgKmin, np.float32): assert_argkmin_results_quasi_equality,
    (
        RadiusNeighbors,
        np.float32,
    ): assert_radius_neighbors_results_quasi_equality,
}


def test_assert_argkmin_results_quasi_equality():

    rtol = 1e-7
    eps = 1e-7
    _1m = 1.0 - eps
    _1p = 1.0 + eps

    _6_1m = 6.1 - eps
    _6_1p = 6.1 + eps

    ref_dist = np.array(
        [
            [1.2, 2.5, _6_1m, 6.1, _6_1p],
            [_1m, _1m, 1, _1p, _1p],
        ]
    )
    ref_indices = np.array(
        [
            [1, 2, 3, 4, 5],
            [6, 7, 8, 9, 10],
        ]
    )

    # Sanity check: compare the reference results to themselves.
    assert_argkmin_results_quasi_equality(
        ref_dist, ref_dist, ref_indices, ref_indices, rtol
    )

    # Apply valid permutation on indices: the last 3 points are
    # all very close to one another so we accept any permutation
    # on their rankings.
    assert_argkmin_results_quasi_equality(
        np.array([[1.2, 2.5, _6_1m, 6.1, _6_1p]]),
        np.array([[1.2, 2.5, 6.1, 6.1, 6.1]]),
        np.array([[1, 2, 3, 4, 5]]),
        np.array([[1, 2, 4, 5, 3]]),
        rtol=rtol,
    )
    # All points are have close distances so any ranking permutation
    # is valid for this query result.
    assert_argkmin_results_quasi_equality(
        np.array([[_1m, _1m, 1, _1p, _1p]]),
        np.array([[_1m, _1m, 1, _1p, _1p]]),
        np.array([[6, 7, 8, 9, 10]]),
        np.array([[6, 9, 7, 8, 10]]),
        rtol=rtol,
    )

    # Apply invalid permutation on indices: permuting the ranks
    # of the 2 nearest neighbors is invalid because the distance
    # values are too different.
    msg = "Neighbors indices for query 0 are not matching"
    with pytest.raises(AssertionError, match=msg):
        assert_argkmin_results_quasi_equality(
            np.array([[1.2, 2.5, _6_1m, 6.1, _6_1p]]),
            np.array([[1.2, 2.5, _6_1m, 6.1, _6_1p]]),
            np.array([[1, 2, 3, 4, 5]]),
            np.array([[2, 1, 3, 4, 5]]),
            rtol=rtol,
        )

    # Indices aren't properly sorted w.r.t their distances
    msg = "Neighbors indices for query 0 are not matching"
    with pytest.raises(AssertionError, match=msg):
        assert_argkmin_results_quasi_equality(
            np.array([[1.2, 2.5, _6_1m, 6.1, _6_1p]]),
            np.array([[1.2, 2.5, _6_1m, 6.1, _6_1p]]),
            np.array([[1, 2, 3, 4, 5]]),
            np.array([[2, 1, 4, 5, 3]]),
            rtol=rtol,
        )

    # Distances aren't properly sorted
    msg = "Distances aren't sorted on row 0"
    with pytest.raises(AssertionError, match=msg):
        assert_argkmin_results_quasi_equality(
            np.array([[1.2, 2.5, _6_1m, 6.1, _6_1p]]),
            np.array([[2.5, 1.2, _6_1m, 6.1, _6_1p]]),
            np.array([[1, 2, 3, 4, 5]]),
            np.array([[2, 1, 4, 5, 3]]),
            rtol=rtol,
        )


def test_assert_radius_neighbors_results_quasi_equality():

    rtol = 1e-7
    eps = 1e-7
    _1m = 1.0 - eps
    _1p = 1.0 + eps

    _6_1m = 6.1 - eps
    _6_1p = 6.1 + eps

    ref_dist = [
        np.array([1.2, 2.5, _6_1m, 6.1, _6_1p]),
        np.array([_1m, 1, _1p, _1p]),
    ]

    ref_indices = [
        np.array([1, 2, 3, 4, 5]),
        np.array([6, 7, 8, 9]),
    ]

    # Sanity check: compare the reference results to themselves.
    assert_radius_neighbors_results_quasi_equality(
        ref_dist,
        ref_dist,
        ref_indices,
        ref_indices,
        radius=6.1,
        rtol=rtol,
    )

    # Apply valid permutation on indices
    assert_radius_neighbors_results_quasi_equality(
        np.array([np.array([1.2, 2.5, _6_1m, 6.1, _6_1p])]),
        np.array([np.array([1.2, 2.5, _6_1m, 6.1, _6_1p])]),
        np.array([np.array([1, 2, 3, 4, 5])]),
        np.array([np.array([1, 2, 4, 5, 3])]),
        radius=6.1,
        rtol=rtol,
    )
    assert_radius_neighbors_results_quasi_equality(
        np.array([np.array([_1m, _1m, 1, _1p, _1p])]),
        np.array([np.array([_1m, _1m, 1, _1p, _1p])]),
        np.array([np.array([6, 7, 8, 9, 10])]),
        np.array([np.array([6, 9, 7, 8, 10])]),
        radius=6.1,
        rtol=rtol,
    )

    # Apply invalid permutation on indices
    msg = "Neighbors indices for query 0 are not matching"
    with pytest.raises(AssertionError, match=msg):
        assert_radius_neighbors_results_quasi_equality(
            np.array([np.array([1.2, 2.5, _6_1m, 6.1, _6_1p])]),
            np.array([np.array([1.2, 2.5, _6_1m, 6.1, _6_1p])]),
            np.array([np.array([1, 2, 3, 4, 5])]),
            np.array([np.array([2, 1, 3, 4, 5])]),
            radius=6.1,
            rtol=rtol,
        )

    # Having extra last elements is valid if they are in: [radius ± rtol]
    assert_radius_neighbors_results_quasi_equality(
        np.array([np.array([1.2, 2.5, _6_1m, 6.1, _6_1p])]),
        np.array([np.array([1.2, 2.5, _6_1m, 6.1])]),
        np.array([np.array([1, 2, 3, 4, 5])]),
        np.array([np.array([1, 2, 3, 4])]),
        radius=6.1,
        rtol=rtol,
    )

    # Having extra last elements is invalid if they are lesser than radius - rtol
    msg = re.escape(
        "The last extra elements ([6.]) aren't in [radius ± rtol]=[6.1 ± 1e-07]"
    )
    with pytest.raises(AssertionError, match=msg):
        assert_radius_neighbors_results_quasi_equality(
            np.array([np.array([1.2, 2.5, 6])]),
            np.array([np.array([1.2, 2.5])]),
            np.array([np.array([1, 2, 3])]),
            np.array([np.array([1, 2])]),
            radius=6.1,
            rtol=rtol,
        )

    # Indices aren't properly sorted w.r.t their distances
    msg = "Neighbors indices for query 0 are not matching"
    with pytest.raises(AssertionError, match=msg):
        assert_radius_neighbors_results_quasi_equality(
            np.array([np.array([1.2, 2.5, _6_1m, 6.1, _6_1p])]),
            np.array([np.array([1.2, 2.5, _6_1m, 6.1, _6_1p])]),
            np.array([np.array([1, 2, 3, 4, 5])]),
            np.array([np.array([2, 1, 4, 5, 3])]),
            radius=6.1,
            rtol=rtol,
        )

    # Distances aren't properly sorted
    msg = "Distances aren't sorted on row 0"
    with pytest.raises(AssertionError, match=msg):
        assert_radius_neighbors_results_quasi_equality(
            np.array([np.array([1.2, 2.5, _6_1m, 6.1, _6_1p])]),
            np.array([np.array([2.5, 1.2, _6_1m, 6.1, _6_1p])]),
            np.array([np.array([1, 2, 3, 4, 5])]),
            np.array([np.array([2, 1, 4, 5, 3])]),
            radius=6.1,
            rtol=rtol,
        )


def test_pairwise_distances_reduction_is_usable_for():
    rng = np.random.RandomState(0)
    X = rng.rand(100, 10)
    Y = rng.rand(100, 10)
    X_csr = csr_matrix(X)
    Y_csr = csr_matrix(Y)
    metric = "manhattan"

    # Must be usable for all possible pair of {dense, sparse} datasets
    assert BaseDistancesReductionDispatcher.is_usable_for(X, Y, metric)
    assert BaseDistancesReductionDispatcher.is_usable_for(X_csr, Y_csr, metric)
    assert BaseDistancesReductionDispatcher.is_usable_for(X_csr, Y, metric)
    assert BaseDistancesReductionDispatcher.is_usable_for(X, Y_csr, metric)

    assert BaseDistancesReductionDispatcher.is_usable_for(
        X.astype(np.float64), Y.astype(np.float64), metric
    )

    assert BaseDistancesReductionDispatcher.is_usable_for(
        X.astype(np.float32), Y.astype(np.float32), metric
    )

    assert not BaseDistancesReductionDispatcher.is_usable_for(
        X.astype(np.int64), Y.astype(np.int64), metric
    )

    assert not BaseDistancesReductionDispatcher.is_usable_for(X, Y, metric="pyfunc")
    assert not BaseDistancesReductionDispatcher.is_usable_for(
        X.astype(np.float32), Y, metric
    )
    assert not BaseDistancesReductionDispatcher.is_usable_for(
        X, Y.astype(np.int32), metric
    )

    # F-ordered arrays are not supported
    assert not BaseDistancesReductionDispatcher.is_usable_for(
        np.asfortranarray(X), Y, metric
    )

    # We prefer not to use those implementations for fused sparse-dense when
    # metric="(sq)euclidean" because it's not yet the most efficient one on
    # all configurations of datasets.
    # See: https://github.com/scikit-learn/scikit-learn/pull/23585#issuecomment-1247996669  # noqa
    # TODO: implement specialisation for (sq)euclidean on fused sparse-dense
    # using sparse-dense routines for matrix-vector multiplications.
    assert not BaseDistancesReductionDispatcher.is_usable_for(
        X_csr, Y, metric="euclidean"
    )
    assert BaseDistancesReductionDispatcher.is_usable_for(
        X_csr, Y_csr, metric="sqeuclidean"
    )
    assert BaseDistancesReductionDispatcher.is_usable_for(
        X_csr, Y_csr, metric="euclidean"
    )

    # CSR matrices without non-zeros elements aren't currently supported
    # TODO: support CSR matrices without non-zeros elements
    X_csr_0_nnz = csr_matrix(X * 0)
    assert not BaseDistancesReductionDispatcher.is_usable_for(X_csr_0_nnz, Y, metric)

    # CSR matrices with int64 indices and indptr (e.g. large nnz, or large n_features)
    # aren't supported as of now.
    # See: https://github.com/scikit-learn/scikit-learn/issues/23653
    # TODO: support CSR matrices with int64 indices and indptr
    X_csr_int64 = csr_matrix(X)
    X_csr_int64.indices = X_csr_int64.indices.astype(np.int64)
    assert not BaseDistancesReductionDispatcher.is_usable_for(X_csr_int64, Y, metric)


def test_argkmin_factory_method_wrong_usages():
    rng = np.random.RandomState(1)
    X = rng.rand(100, 10)
    Y = rng.rand(100, 10)
    k = 5
    metric = "euclidean"

    msg = (
        "Only float64 or float32 datasets pairs are supported at this time, "
        "got: X.dtype=float32 and Y.dtype=float64"
    )
    with pytest.raises(ValueError, match=msg):
        ArgKmin.compute(X=X.astype(np.float32), Y=Y, k=k, metric=metric)

    msg = (
        "Only float64 or float32 datasets pairs are supported at this time, "
        "got: X.dtype=float64 and Y.dtype=int32"
    )
    with pytest.raises(ValueError, match=msg):
        ArgKmin.compute(X=X, Y=Y.astype(np.int32), k=k, metric=metric)

    with pytest.raises(ValueError, match="k == -1, must be >= 1."):
        ArgKmin.compute(X=X, Y=Y, k=-1, metric=metric)

    with pytest.raises(ValueError, match="k == 0, must be >= 1."):
        ArgKmin.compute(X=X, Y=Y, k=0, metric=metric)

    with pytest.raises(ValueError, match="Unrecognized metric"):
        ArgKmin.compute(X=X, Y=Y, k=k, metric="wrong metric")

    with pytest.raises(
        ValueError, match=r"Buffer has wrong number of dimensions \(expected 2, got 1\)"
    ):
        ArgKmin.compute(X=np.array([1.0, 2.0]), Y=Y, k=k, metric=metric)

    with pytest.raises(ValueError, match="ndarray is not C-contiguous"):
        ArgKmin.compute(X=np.asfortranarray(X), Y=Y, k=k, metric=metric)

    # A UserWarning must be raised in this case.
    unused_metric_kwargs = {"p": 3}

    message = r"Some metric_kwargs have been passed \({'p': 3}\) but"

    with pytest.warns(UserWarning, match=message):
        ArgKmin.compute(
            X=X, Y=Y, k=k, metric=metric, metric_kwargs=unused_metric_kwargs
        )

    # A UserWarning must be raised in this case.
    metric_kwargs = {
        "p": 3,  # unused
        "Y_norm_squared": sqeuclidean_row_norms(Y, num_threads=2),
    }

    message = r"Some metric_kwargs have been passed \({'p': 3, 'Y_norm_squared'"

    with pytest.warns(UserWarning, match=message):
        ArgKmin.compute(X=X, Y=Y, k=k, metric=metric, metric_kwargs=metric_kwargs)

    # No user warning must be raised in this case.
    metric_kwargs = {
        "X_norm_squared": sqeuclidean_row_norms(X, num_threads=2),
    }
    with warnings.catch_warnings():
        warnings.simplefilter("error", category=UserWarning)
        ArgKmin.compute(X=X, Y=Y, k=k, metric=metric, metric_kwargs=metric_kwargs)

    # No user warning must be raised in this case.
    metric_kwargs = {
        "X_norm_squared": sqeuclidean_row_norms(X, num_threads=2),
        "Y_norm_squared": sqeuclidean_row_norms(Y, num_threads=2),
    }
    with warnings.catch_warnings():
        warnings.simplefilter("error", category=UserWarning)
        ArgKmin.compute(X=X, Y=Y, k=k, metric=metric, metric_kwargs=metric_kwargs)


def test_radius_neighbors_factory_method_wrong_usages():
    rng = np.random.RandomState(1)
    X = rng.rand(100, 10)
    Y = rng.rand(100, 10)
    radius = 5
    metric = "euclidean"

    msg = (
        "Only float64 or float32 datasets pairs are supported at this time, "
        "got: X.dtype=float32 and Y.dtype=float64"
    )
    with pytest.raises(
        ValueError,
        match=msg,
    ):
        RadiusNeighbors.compute(
            X=X.astype(np.float32), Y=Y, radius=radius, metric=metric
        )

    msg = (
        "Only float64 or float32 datasets pairs are supported at this time, "
        "got: X.dtype=float64 and Y.dtype=int32"
    )
    with pytest.raises(
        ValueError,
        match=msg,
    ):
        RadiusNeighbors.compute(X=X, Y=Y.astype(np.int32), radius=radius, metric=metric)

    with pytest.raises(ValueError, match="radius == -1.0, must be >= 0."):
        RadiusNeighbors.compute(X=X, Y=Y, radius=-1, metric=metric)

    with pytest.raises(ValueError, match="Unrecognized metric"):
        RadiusNeighbors.compute(X=X, Y=Y, radius=radius, metric="wrong metric")

    with pytest.raises(
        ValueError, match=r"Buffer has wrong number of dimensions \(expected 2, got 1\)"
    ):
        RadiusNeighbors.compute(
            X=np.array([1.0, 2.0]), Y=Y, radius=radius, metric=metric
        )

    with pytest.raises(ValueError, match="ndarray is not C-contiguous"):
        RadiusNeighbors.compute(
            X=np.asfortranarray(X), Y=Y, radius=radius, metric=metric
        )

    unused_metric_kwargs = {"p": 3}

    # A UserWarning must be raised in this case.
    message = r"Some metric_kwargs have been passed \({'p': 3}\) but"

    with pytest.warns(UserWarning, match=message):
        RadiusNeighbors.compute(
            X=X, Y=Y, radius=radius, metric=metric, metric_kwargs=unused_metric_kwargs
        )

    # A UserWarning must be raised in this case.
    metric_kwargs = {
        "p": 3,  # unused
        "Y_norm_squared": sqeuclidean_row_norms(Y, num_threads=2),
    }

    message = r"Some metric_kwargs have been passed \({'p': 3, 'Y_norm_squared'"

    with pytest.warns(UserWarning, match=message):
        RadiusNeighbors.compute(
            X=X, Y=Y, radius=radius, metric=metric, metric_kwargs=metric_kwargs
        )

    # No user warning must be raised in this case.
    metric_kwargs = {
        "X_norm_squared": sqeuclidean_row_norms(X, num_threads=2),
        "Y_norm_squared": sqeuclidean_row_norms(Y, num_threads=2),
    }
    with warnings.catch_warnings():
        warnings.simplefilter("error", category=UserWarning)
        RadiusNeighbors.compute(
            X=X, Y=Y, radius=radius, metric=metric, metric_kwargs=metric_kwargs
        )

    # No user warning must be raised in this case.
    metric_kwargs = {
        "X_norm_squared": sqeuclidean_row_norms(X, num_threads=2),
    }
    with warnings.catch_warnings():
        warnings.simplefilter("error", category=UserWarning)
        RadiusNeighbors.compute(
            X=X, Y=Y, radius=radius, metric=metric, metric_kwargs=metric_kwargs
        )


@pytest.mark.parametrize(
    "n_samples_X, n_samples_Y", [(100, 100), (500, 100), (100, 500)]
)
@pytest.mark.parametrize("Dispatcher", [ArgKmin, RadiusNeighbors])
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
def test_chunk_size_agnosticism(
    global_random_seed,
    Dispatcher,
    n_samples_X,
    n_samples_Y,
    dtype,
    n_features=100,
):
    """Check that results do not depend on the chunk size."""
    rng = np.random.RandomState(global_random_seed)
    spread = 100
    X = rng.rand(n_samples_X, n_features).astype(dtype) * spread
    Y = rng.rand(n_samples_Y, n_features).astype(dtype) * spread

    if Dispatcher is ArgKmin:
        parameter = 10
        check_parameters = {}
        compute_parameters = {}
    else:
        # Scaling the radius slightly with the numbers of dimensions
        radius = 10 ** np.log(n_features)
        parameter = radius
        check_parameters = {"radius": radius}
        compute_parameters = {"sort_results": True}

    ref_dist, ref_indices = Dispatcher.compute(
        X,
        Y,
        parameter,
        chunk_size=256,  # default
        metric="manhattan",
        return_distance=True,
        **compute_parameters,
    )

    dist, indices = Dispatcher.compute(
        X,
        Y,
        parameter,
        chunk_size=41,
        metric="manhattan",
        return_distance=True,
        **compute_parameters,
    )

    ASSERT_RESULT[(Dispatcher, dtype)](
        ref_dist, dist, ref_indices, indices, **check_parameters
    )


@pytest.mark.parametrize(
    "n_samples_X, n_samples_Y", [(100, 100), (500, 100), (100, 500)]
)
@pytest.mark.parametrize("Dispatcher", [ArgKmin, RadiusNeighbors])
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
def test_n_threads_agnosticism(
    global_random_seed,
    Dispatcher,
    n_samples_X,
    n_samples_Y,
    dtype,
    n_features=100,
):
    """Check that results do not depend on the number of threads."""
    rng = np.random.RandomState(global_random_seed)
    spread = 100
    X = rng.rand(n_samples_X, n_features).astype(dtype) * spread
    Y = rng.rand(n_samples_Y, n_features).astype(dtype) * spread

    if Dispatcher is ArgKmin:
        parameter = 10
        check_parameters = {}
        compute_parameters = {}
    else:
        # Scaling the radius slightly with the numbers of dimensions
        radius = 10 ** np.log(n_features)
        parameter = radius
        check_parameters = {"radius": radius}
        compute_parameters = {"sort_results": True}

    ref_dist, ref_indices = Dispatcher.compute(
        X,
        Y,
        parameter,
        chunk_size=25,  # make sure we use multiple threads
        return_distance=True,
        **compute_parameters,
    )

    with threadpoolctl.threadpool_limits(limits=1, user_api="openmp"):
        dist, indices = Dispatcher.compute(
            X,
            Y,
            parameter,
            chunk_size=25,
            return_distance=True,
            **compute_parameters,
        )

    ASSERT_RESULT[(Dispatcher, dtype)](
        ref_dist, dist, ref_indices, indices, **check_parameters
    )


@pytest.mark.parametrize(
    "Dispatcher, dtype",
    [
        (ArgKmin, np.float64),
        (RadiusNeighbors, np.float32),
        (ArgKmin, np.float32),
        (RadiusNeighbors, np.float64),
    ],
)
def test_format_agnosticism(
    global_random_seed,
    Dispatcher,
    dtype,
):
    """Check that results do not depend on the format (dense, sparse) of the input."""
    rng = np.random.RandomState(global_random_seed)
    spread = 100
    n_samples, n_features = 100, 100

    X = rng.rand(n_samples, n_features).astype(dtype) * spread
    Y = rng.rand(n_samples, n_features).astype(dtype) * spread

    X_csr = csr_matrix(X)
    Y_csr = csr_matrix(Y)

    if Dispatcher is ArgKmin:
        parameter = 10
        check_parameters = {}
        compute_parameters = {}
    else:
        # Scaling the radius slightly with the numbers of dimensions
        radius = 10 ** np.log(n_features)
        parameter = radius
        check_parameters = {"radius": radius}
        compute_parameters = {"sort_results": True}

    dist_dense, indices_dense = Dispatcher.compute(
        X,
        Y,
        parameter,
        chunk_size=50,
        return_distance=True,
        **compute_parameters,
    )

    for _X, _Y in itertools.product((X, X_csr), (Y, Y_csr)):
        if _X is X and _Y is Y:
            continue
        dist, indices = Dispatcher.compute(
            _X,
            _Y,
            parameter,
            chunk_size=50,
            return_distance=True,
            **compute_parameters,
        )
        ASSERT_RESULT[(Dispatcher, dtype)](
            dist_dense,
            dist,
            indices_dense,
            indices,
            **check_parameters,
        )


@pytest.mark.parametrize(
    "n_samples_X, n_samples_Y", [(100, 100), (100, 500), (500, 100)]
)
@pytest.mark.parametrize(
    "metric",
    ["euclidean", "minkowski", "manhattan", "infinity", "seuclidean", "haversine"],
)
@pytest.mark.parametrize("Dispatcher", [ArgKmin, RadiusNeighbors])
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
def test_strategies_consistency(
    global_random_seed,
    Dispatcher,
    metric,
    n_samples_X,
    n_samples_Y,
    dtype,
    n_features=10,
):
    """Check that the results do not depend on the strategy used."""
    rng = np.random.RandomState(global_random_seed)
    spread = 100
    X = rng.rand(n_samples_X, n_features).astype(dtype) * spread
    Y = rng.rand(n_samples_Y, n_features).astype(dtype) * spread

    # Haversine distance only accepts 2D data
    if metric == "haversine":
        X = np.ascontiguousarray(X[:, :2])
        Y = np.ascontiguousarray(Y[:, :2])

    if Dispatcher is ArgKmin:
        parameter = 10
        check_parameters = {}
        compute_parameters = {}
    else:
        # Scaling the radius slightly with the numbers of dimensions
        radius = 10 ** np.log(n_features)
        parameter = radius
        check_parameters = {"radius": radius}
        compute_parameters = {"sort_results": True}

    dist_par_X, indices_par_X = Dispatcher.compute(
        X,
        Y,
        parameter,
        metric=metric,
        # Taking the first
        metric_kwargs=_get_metric_params_list(
            metric, n_features, seed=global_random_seed
        )[0],
        # To be sure to use parallelization
        chunk_size=n_samples_X // 4,
        strategy="parallel_on_X",
        return_distance=True,
        **compute_parameters,
    )

    dist_par_Y, indices_par_Y = Dispatcher.compute(
        X,
        Y,
        parameter,
        metric=metric,
        # Taking the first
        metric_kwargs=_get_metric_params_list(
            metric, n_features, seed=global_random_seed
        )[0],
        # To be sure to use parallelization
        chunk_size=n_samples_Y // 4,
        strategy="parallel_on_Y",
        return_distance=True,
        **compute_parameters,
    )

    ASSERT_RESULT[(Dispatcher, dtype)](
        dist_par_X, dist_par_Y, indices_par_X, indices_par_Y, **check_parameters
    )


# "Concrete Dispatchers"-specific tests

# TODO: Remove filterwarnings in 1.3 when wminkowski is removed
@pytest.mark.filterwarnings("ignore:WMinkowskiDistance:FutureWarning:sklearn")
@pytest.mark.parametrize("n_features", [50, 500])
@pytest.mark.parametrize("translation", [0, 1e6])
@pytest.mark.parametrize("metric", CDIST_PAIRWISE_DISTANCES_REDUCTION_COMMON_METRICS)
@pytest.mark.parametrize("strategy", ("parallel_on_X", "parallel_on_Y"))
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
def test_pairwise_distances_argkmin(
    global_random_seed,
    n_features,
    translation,
    metric,
    strategy,
    dtype,
    n_samples=100,
    k=10,
):
    # TODO: can we easily fix this discrepancy?
    edge_cases = [
        (np.float32, "chebyshev", 1000000.0),
        (np.float32, "cityblock", 1000000.0),
    ]
    if (dtype, metric, translation) in edge_cases:
        pytest.xfail("Numerical differences lead to small differences in results.")

    rng = np.random.RandomState(global_random_seed)
    spread = 1000
    X = translation + rng.rand(n_samples, n_features).astype(dtype) * spread
    Y = translation + rng.rand(n_samples, n_features).astype(dtype) * spread

    X_csr = csr_matrix(X)
    Y_csr = csr_matrix(Y)

    # Haversine distance only accepts 2D data
    if metric == "haversine":
        X = np.ascontiguousarray(X[:, :2])
        Y = np.ascontiguousarray(Y[:, :2])

    metric_kwargs = _get_metric_params_list(metric, n_features)[0]

    # Reference for argkmin results
    if metric == "euclidean":
        # Compare to scikit-learn GEMM optimized implementation
        dist_matrix = euclidean_distances(X, Y)
    else:
        dist_matrix = cdist(X, Y, metric=metric, **metric_kwargs)
    # Taking argkmin (indices of the k smallest values)
    argkmin_indices_ref = np.argsort(dist_matrix, axis=1)[:, :k]
    # Getting the associated distances
    argkmin_distances_ref = np.zeros(argkmin_indices_ref.shape, dtype=np.float64)
    for row_idx in range(argkmin_indices_ref.shape[0]):
        argkmin_distances_ref[row_idx] = dist_matrix[
            row_idx, argkmin_indices_ref[row_idx]
        ]

    for _X, _Y in [(X, Y), (X_csr, Y_csr)]:
        argkmin_distances, argkmin_indices = ArgKmin.compute(
            _X,
            _Y,
            k,
            metric=metric,
            metric_kwargs=metric_kwargs,
            return_distance=True,
            # So as to have more than a chunk, forcing parallelism.
            chunk_size=n_samples // 4,
            strategy=strategy,
        )

        ASSERT_RESULT[(ArgKmin, dtype)](
            argkmin_distances,
            argkmin_distances_ref,
            argkmin_indices,
            argkmin_indices_ref,
        )


# TODO: Remove filterwarnings in 1.3 when wminkowski is removed
@pytest.mark.filterwarnings("ignore:WMinkowskiDistance:FutureWarning:sklearn")
@pytest.mark.parametrize("n_features", [50, 500])
@pytest.mark.parametrize("translation", [0, 1e6])
@pytest.mark.parametrize("metric", CDIST_PAIRWISE_DISTANCES_REDUCTION_COMMON_METRICS)
@pytest.mark.parametrize("strategy", ("parallel_on_X", "parallel_on_Y"))
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
def test_pairwise_distances_radius_neighbors(
    global_random_seed,
    n_features,
    translation,
    metric,
    strategy,
    dtype,
    n_samples=100,
):
    rng = np.random.RandomState(global_random_seed)
    spread = 1000
    radius = spread * np.log(n_features)
    X = translation + rng.rand(n_samples, n_features).astype(dtype) * spread
    Y = translation + rng.rand(n_samples, n_features).astype(dtype) * spread

    metric_kwargs = _get_metric_params_list(
        metric, n_features, seed=global_random_seed
    )[0]

    # Reference for argkmin results
    if metric == "euclidean":
        # Compare to scikit-learn GEMM optimized implementation
        dist_matrix = euclidean_distances(X, Y)
    else:
        dist_matrix = cdist(X, Y, metric=metric, **metric_kwargs)

    # Getting the neighbors for a given radius
    neigh_indices_ref = []
    neigh_distances_ref = []

    for row in dist_matrix:
        ind = np.arange(row.shape[0])[row <= radius]
        dist = row[ind]

        sort = np.argsort(dist)
        ind, dist = ind[sort], dist[sort]

        neigh_indices_ref.append(ind)
        neigh_distances_ref.append(dist)

    neigh_distances, neigh_indices = RadiusNeighbors.compute(
        X,
        Y,
        radius,
        metric=metric,
        metric_kwargs=metric_kwargs,
        return_distance=True,
        # So as to have more than a chunk, forcing parallelism.
        chunk_size=n_samples // 4,
        strategy=strategy,
        sort_results=True,
    )

    ASSERT_RESULT[(RadiusNeighbors, dtype)](
        neigh_distances, neigh_distances_ref, neigh_indices, neigh_indices_ref, radius
    )


@pytest.mark.parametrize("Dispatcher", [ArgKmin, RadiusNeighbors])
@pytest.mark.parametrize("metric", ["manhattan", "euclidean"])
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
def test_memmap_backed_data(
    metric,
    Dispatcher,
    dtype,
):
    """Check that the results do not depend on the datasets writability."""
    rng = np.random.RandomState(0)
    spread = 100
    n_samples, n_features = 128, 10
    X = rng.rand(n_samples, n_features).astype(dtype) * spread
    Y = rng.rand(n_samples, n_features).astype(dtype) * spread

    # Create read only datasets
    X_mm, Y_mm = create_memmap_backed_data([X, Y])

    if Dispatcher is ArgKmin:
        parameter = 10
        check_parameters = {}
        compute_parameters = {}
    else:
        # Scaling the radius slightly with the numbers of dimensions
        radius = 10 ** np.log(n_features)
        parameter = radius
        check_parameters = {"radius": radius}
        compute_parameters = {"sort_results": True}

    ref_dist, ref_indices = Dispatcher.compute(
        X,
        Y,
        parameter,
        metric=metric,
        return_distance=True,
        **compute_parameters,
    )

    dist_mm, indices_mm = Dispatcher.compute(
        X_mm,
        Y_mm,
        parameter,
        metric=metric,
        return_distance=True,
        **compute_parameters,
    )

    ASSERT_RESULT[(Dispatcher, dtype)](
        ref_dist, dist_mm, ref_indices, indices_mm, **check_parameters
    )


@pytest.mark.parametrize("n_samples", [100, 1000])
@pytest.mark.parametrize("n_features", [5, 10, 100])
@pytest.mark.parametrize("num_threads", [1, 2, 8])
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
def test_sqeuclidean_row_norms(
    global_random_seed,
    n_samples,
    n_features,
    num_threads,
    dtype,
):
    rng = np.random.RandomState(global_random_seed)
    spread = 100
    X = rng.rand(n_samples, n_features).astype(dtype) * spread

    X_csr = csr_matrix(X)

    sq_row_norm_reference = np.linalg.norm(X, axis=1) ** 2
    sq_row_norm = sqeuclidean_row_norms(X, num_threads=num_threads)

    sq_row_norm_csr = sqeuclidean_row_norms(X_csr, num_threads=num_threads)

    assert_allclose(sq_row_norm_reference, sq_row_norm)
    assert_allclose(sq_row_norm_reference, sq_row_norm_csr)

    with pytest.raises(ValueError):
        X = np.asfortranarray(X)
        sqeuclidean_row_norms(X, num_threads=num_threads)