1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
|
# Author: Wei Xue <xuewei4d@gmail.com>
# Thierry Guillemot <thierry.guillemot.work@gmail.com>
# License: BSD 3 clause
import itertools
import re
import sys
import copy
import warnings
import pytest
import numpy as np
from scipy import stats, linalg
from sklearn.cluster import KMeans
from sklearn.covariance import EmpiricalCovariance
from sklearn.datasets import make_spd_matrix
from io import StringIO
from sklearn.metrics.cluster import adjusted_rand_score
from sklearn.mixture import GaussianMixture
from sklearn.mixture._gaussian_mixture import (
_estimate_gaussian_covariances_full,
_estimate_gaussian_covariances_tied,
_estimate_gaussian_covariances_diag,
_estimate_gaussian_covariances_spherical,
_estimate_gaussian_parameters,
_compute_precision_cholesky,
_compute_log_det_cholesky,
)
from sklearn.exceptions import ConvergenceWarning, NotFittedError
from sklearn.utils.extmath import fast_logdet
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import ignore_warnings
COVARIANCE_TYPE = ["full", "tied", "diag", "spherical"]
def generate_data(n_samples, n_features, weights, means, precisions, covariance_type):
rng = np.random.RandomState(0)
X = []
if covariance_type == "spherical":
for _, (w, m, c) in enumerate(zip(weights, means, precisions["spherical"])):
X.append(
rng.multivariate_normal(
m, c * np.eye(n_features), int(np.round(w * n_samples))
)
)
if covariance_type == "diag":
for _, (w, m, c) in enumerate(zip(weights, means, precisions["diag"])):
X.append(
rng.multivariate_normal(m, np.diag(c), int(np.round(w * n_samples)))
)
if covariance_type == "tied":
for _, (w, m) in enumerate(zip(weights, means)):
X.append(
rng.multivariate_normal(
m, precisions["tied"], int(np.round(w * n_samples))
)
)
if covariance_type == "full":
for _, (w, m, c) in enumerate(zip(weights, means, precisions["full"])):
X.append(rng.multivariate_normal(m, c, int(np.round(w * n_samples))))
X = np.vstack(X)
return X
class RandomData:
def __init__(self, rng, n_samples=200, n_components=2, n_features=2, scale=50):
self.n_samples = n_samples
self.n_components = n_components
self.n_features = n_features
self.weights = rng.rand(n_components)
self.weights = self.weights / self.weights.sum()
self.means = rng.rand(n_components, n_features) * scale
self.covariances = {
"spherical": 0.5 + rng.rand(n_components),
"diag": (0.5 + rng.rand(n_components, n_features)) ** 2,
"tied": make_spd_matrix(n_features, random_state=rng),
"full": np.array(
[
make_spd_matrix(n_features, random_state=rng) * 0.5
for _ in range(n_components)
]
),
}
self.precisions = {
"spherical": 1.0 / self.covariances["spherical"],
"diag": 1.0 / self.covariances["diag"],
"tied": linalg.inv(self.covariances["tied"]),
"full": np.array(
[linalg.inv(covariance) for covariance in self.covariances["full"]]
),
}
self.X = dict(
zip(
COVARIANCE_TYPE,
[
generate_data(
n_samples,
n_features,
self.weights,
self.means,
self.covariances,
covar_type,
)
for covar_type in COVARIANCE_TYPE
],
)
)
self.Y = np.hstack(
[
np.full(int(np.round(w * n_samples)), k, dtype=int)
for k, w in enumerate(self.weights)
]
)
def test_gaussian_mixture_attributes():
# test bad parameters
rng = np.random.RandomState(0)
X = rng.rand(10, 2)
# test good parameters
n_components, tol, n_init, max_iter, reg_covar = 2, 1e-4, 3, 30, 1e-1
covariance_type, init_params = "full", "random"
gmm = GaussianMixture(
n_components=n_components,
tol=tol,
n_init=n_init,
max_iter=max_iter,
reg_covar=reg_covar,
covariance_type=covariance_type,
init_params=init_params,
).fit(X)
assert gmm.n_components == n_components
assert gmm.covariance_type == covariance_type
assert gmm.tol == tol
assert gmm.reg_covar == reg_covar
assert gmm.max_iter == max_iter
assert gmm.n_init == n_init
assert gmm.init_params == init_params
def test_check_weights():
rng = np.random.RandomState(0)
rand_data = RandomData(rng)
n_components = rand_data.n_components
X = rand_data.X["full"]
g = GaussianMixture(n_components=n_components)
# Check bad shape
weights_bad_shape = rng.rand(n_components, 1)
g.weights_init = weights_bad_shape
msg = re.escape(
"The parameter 'weights' should have the shape of "
f"({n_components},), but got {str(weights_bad_shape.shape)}"
)
with pytest.raises(ValueError, match=msg):
g.fit(X)
# Check bad range
weights_bad_range = rng.rand(n_components) + 1
g.weights_init = weights_bad_range
msg = re.escape(
"The parameter 'weights' should be in the range [0, 1], but got"
f" max value {np.min(weights_bad_range):.5f}, "
f"min value {np.max(weights_bad_range):.5f}"
)
with pytest.raises(ValueError, match=msg):
g.fit(X)
# Check bad normalization
weights_bad_norm = rng.rand(n_components)
weights_bad_norm = weights_bad_norm / (weights_bad_norm.sum() + 1)
g.weights_init = weights_bad_norm
msg = re.escape(
"The parameter 'weights' should be normalized, "
f"but got sum(weights) = {np.sum(weights_bad_norm):.5f}"
)
with pytest.raises(ValueError, match=msg):
g.fit(X)
# Check good weights matrix
weights = rand_data.weights
g = GaussianMixture(weights_init=weights, n_components=n_components)
g.fit(X)
assert_array_equal(weights, g.weights_init)
def test_check_means():
rng = np.random.RandomState(0)
rand_data = RandomData(rng)
n_components, n_features = rand_data.n_components, rand_data.n_features
X = rand_data.X["full"]
g = GaussianMixture(n_components=n_components)
# Check means bad shape
means_bad_shape = rng.rand(n_components + 1, n_features)
g.means_init = means_bad_shape
msg = "The parameter 'means' should have the shape of "
with pytest.raises(ValueError, match=msg):
g.fit(X)
# Check good means matrix
means = rand_data.means
g.means_init = means
g.fit(X)
assert_array_equal(means, g.means_init)
def test_check_precisions():
rng = np.random.RandomState(0)
rand_data = RandomData(rng)
n_components, n_features = rand_data.n_components, rand_data.n_features
# Define the bad precisions for each covariance_type
precisions_bad_shape = {
"full": np.ones((n_components + 1, n_features, n_features)),
"tied": np.ones((n_features + 1, n_features + 1)),
"diag": np.ones((n_components + 1, n_features)),
"spherical": np.ones((n_components + 1)),
}
# Define not positive-definite precisions
precisions_not_pos = np.ones((n_components, n_features, n_features))
precisions_not_pos[0] = np.eye(n_features)
precisions_not_pos[0, 0, 0] = -1.0
precisions_not_positive = {
"full": precisions_not_pos,
"tied": precisions_not_pos[0],
"diag": np.full((n_components, n_features), -1.0),
"spherical": np.full(n_components, -1.0),
}
not_positive_errors = {
"full": "symmetric, positive-definite",
"tied": "symmetric, positive-definite",
"diag": "positive",
"spherical": "positive",
}
for covar_type in COVARIANCE_TYPE:
X = RandomData(rng).X[covar_type]
g = GaussianMixture(
n_components=n_components, covariance_type=covar_type, random_state=rng
)
# Check precisions with bad shapes
g.precisions_init = precisions_bad_shape[covar_type]
msg = f"The parameter '{covar_type} precision' should have the shape of"
with pytest.raises(ValueError, match=msg):
g.fit(X)
# Check not positive precisions
g.precisions_init = precisions_not_positive[covar_type]
msg = f"'{covar_type} precision' should be {not_positive_errors[covar_type]}"
with pytest.raises(ValueError, match=msg):
g.fit(X)
# Check the correct init of precisions_init
g.precisions_init = rand_data.precisions[covar_type]
g.fit(X)
assert_array_equal(rand_data.precisions[covar_type], g.precisions_init)
def test_suffstat_sk_full():
# compare the precision matrix compute from the
# EmpiricalCovariance.covariance fitted on X*sqrt(resp)
# with _sufficient_sk_full, n_components=1
rng = np.random.RandomState(0)
n_samples, n_features = 500, 2
# special case 1, assuming data is "centered"
X = rng.rand(n_samples, n_features)
resp = rng.rand(n_samples, 1)
X_resp = np.sqrt(resp) * X
nk = np.array([n_samples])
xk = np.zeros((1, n_features))
covars_pred = _estimate_gaussian_covariances_full(resp, X, nk, xk, 0)
ecov = EmpiricalCovariance(assume_centered=True)
ecov.fit(X_resp)
assert_almost_equal(ecov.error_norm(covars_pred[0], norm="frobenius"), 0)
assert_almost_equal(ecov.error_norm(covars_pred[0], norm="spectral"), 0)
# check the precision computation
precs_chol_pred = _compute_precision_cholesky(covars_pred, "full")
precs_pred = np.array([np.dot(prec, prec.T) for prec in precs_chol_pred])
precs_est = np.array([linalg.inv(cov) for cov in covars_pred])
assert_array_almost_equal(precs_est, precs_pred)
# special case 2, assuming resp are all ones
resp = np.ones((n_samples, 1))
nk = np.array([n_samples])
xk = X.mean(axis=0).reshape((1, -1))
covars_pred = _estimate_gaussian_covariances_full(resp, X, nk, xk, 0)
ecov = EmpiricalCovariance(assume_centered=False)
ecov.fit(X)
assert_almost_equal(ecov.error_norm(covars_pred[0], norm="frobenius"), 0)
assert_almost_equal(ecov.error_norm(covars_pred[0], norm="spectral"), 0)
# check the precision computation
precs_chol_pred = _compute_precision_cholesky(covars_pred, "full")
precs_pred = np.array([np.dot(prec, prec.T) for prec in precs_chol_pred])
precs_est = np.array([linalg.inv(cov) for cov in covars_pred])
assert_array_almost_equal(precs_est, precs_pred)
def test_suffstat_sk_tied():
# use equation Nk * Sk / N = S_tied
rng = np.random.RandomState(0)
n_samples, n_features, n_components = 500, 2, 2
resp = rng.rand(n_samples, n_components)
resp = resp / resp.sum(axis=1)[:, np.newaxis]
X = rng.rand(n_samples, n_features)
nk = resp.sum(axis=0)
xk = np.dot(resp.T, X) / nk[:, np.newaxis]
covars_pred_full = _estimate_gaussian_covariances_full(resp, X, nk, xk, 0)
covars_pred_full = (
np.sum(nk[:, np.newaxis, np.newaxis] * covars_pred_full, 0) / n_samples
)
covars_pred_tied = _estimate_gaussian_covariances_tied(resp, X, nk, xk, 0)
ecov = EmpiricalCovariance()
ecov.covariance_ = covars_pred_full
assert_almost_equal(ecov.error_norm(covars_pred_tied, norm="frobenius"), 0)
assert_almost_equal(ecov.error_norm(covars_pred_tied, norm="spectral"), 0)
# check the precision computation
precs_chol_pred = _compute_precision_cholesky(covars_pred_tied, "tied")
precs_pred = np.dot(precs_chol_pred, precs_chol_pred.T)
precs_est = linalg.inv(covars_pred_tied)
assert_array_almost_equal(precs_est, precs_pred)
def test_suffstat_sk_diag():
# test against 'full' case
rng = np.random.RandomState(0)
n_samples, n_features, n_components = 500, 2, 2
resp = rng.rand(n_samples, n_components)
resp = resp / resp.sum(axis=1)[:, np.newaxis]
X = rng.rand(n_samples, n_features)
nk = resp.sum(axis=0)
xk = np.dot(resp.T, X) / nk[:, np.newaxis]
covars_pred_full = _estimate_gaussian_covariances_full(resp, X, nk, xk, 0)
covars_pred_diag = _estimate_gaussian_covariances_diag(resp, X, nk, xk, 0)
ecov = EmpiricalCovariance()
for cov_full, cov_diag in zip(covars_pred_full, covars_pred_diag):
ecov.covariance_ = np.diag(np.diag(cov_full))
cov_diag = np.diag(cov_diag)
assert_almost_equal(ecov.error_norm(cov_diag, norm="frobenius"), 0)
assert_almost_equal(ecov.error_norm(cov_diag, norm="spectral"), 0)
# check the precision computation
precs_chol_pred = _compute_precision_cholesky(covars_pred_diag, "diag")
assert_almost_equal(covars_pred_diag, 1.0 / precs_chol_pred**2)
def test_gaussian_suffstat_sk_spherical():
# computing spherical covariance equals to the variance of one-dimension
# data after flattening, n_components=1
rng = np.random.RandomState(0)
n_samples, n_features = 500, 2
X = rng.rand(n_samples, n_features)
X = X - X.mean()
resp = np.ones((n_samples, 1))
nk = np.array([n_samples])
xk = X.mean()
covars_pred_spherical = _estimate_gaussian_covariances_spherical(resp, X, nk, xk, 0)
covars_pred_spherical2 = np.dot(X.flatten().T, X.flatten()) / (
n_features * n_samples
)
assert_almost_equal(covars_pred_spherical, covars_pred_spherical2)
# check the precision computation
precs_chol_pred = _compute_precision_cholesky(covars_pred_spherical, "spherical")
assert_almost_equal(covars_pred_spherical, 1.0 / precs_chol_pred**2)
def test_compute_log_det_cholesky():
n_features = 2
rand_data = RandomData(np.random.RandomState(0))
for covar_type in COVARIANCE_TYPE:
covariance = rand_data.covariances[covar_type]
if covar_type == "full":
predected_det = np.array([linalg.det(cov) for cov in covariance])
elif covar_type == "tied":
predected_det = linalg.det(covariance)
elif covar_type == "diag":
predected_det = np.array([np.prod(cov) for cov in covariance])
elif covar_type == "spherical":
predected_det = covariance**n_features
# We compute the cholesky decomposition of the covariance matrix
expected_det = _compute_log_det_cholesky(
_compute_precision_cholesky(covariance, covar_type),
covar_type,
n_features=n_features,
)
assert_array_almost_equal(expected_det, -0.5 * np.log(predected_det))
def _naive_lmvnpdf_diag(X, means, covars):
resp = np.empty((len(X), len(means)))
stds = np.sqrt(covars)
for i, (mean, std) in enumerate(zip(means, stds)):
resp[:, i] = stats.norm.logpdf(X, mean, std).sum(axis=1)
return resp
def test_gaussian_mixture_log_probabilities():
from sklearn.mixture._gaussian_mixture import _estimate_log_gaussian_prob
# test against with _naive_lmvnpdf_diag
rng = np.random.RandomState(0)
rand_data = RandomData(rng)
n_samples = 500
n_features = rand_data.n_features
n_components = rand_data.n_components
means = rand_data.means
covars_diag = rng.rand(n_components, n_features)
X = rng.rand(n_samples, n_features)
log_prob_naive = _naive_lmvnpdf_diag(X, means, covars_diag)
# full covariances
precs_full = np.array([np.diag(1.0 / np.sqrt(x)) for x in covars_diag])
log_prob = _estimate_log_gaussian_prob(X, means, precs_full, "full")
assert_array_almost_equal(log_prob, log_prob_naive)
# diag covariances
precs_chol_diag = 1.0 / np.sqrt(covars_diag)
log_prob = _estimate_log_gaussian_prob(X, means, precs_chol_diag, "diag")
assert_array_almost_equal(log_prob, log_prob_naive)
# tied
covars_tied = np.array([x for x in covars_diag]).mean(axis=0)
precs_tied = np.diag(np.sqrt(1.0 / covars_tied))
log_prob_naive = _naive_lmvnpdf_diag(X, means, [covars_tied] * n_components)
log_prob = _estimate_log_gaussian_prob(X, means, precs_tied, "tied")
assert_array_almost_equal(log_prob, log_prob_naive)
# spherical
covars_spherical = covars_diag.mean(axis=1)
precs_spherical = 1.0 / np.sqrt(covars_diag.mean(axis=1))
log_prob_naive = _naive_lmvnpdf_diag(
X, means, [[k] * n_features for k in covars_spherical]
)
log_prob = _estimate_log_gaussian_prob(X, means, precs_spherical, "spherical")
assert_array_almost_equal(log_prob, log_prob_naive)
# skip tests on weighted_log_probabilities, log_weights
def test_gaussian_mixture_estimate_log_prob_resp():
# test whether responsibilities are normalized
rng = np.random.RandomState(0)
rand_data = RandomData(rng, scale=5)
n_samples = rand_data.n_samples
n_features = rand_data.n_features
n_components = rand_data.n_components
X = rng.rand(n_samples, n_features)
for covar_type in COVARIANCE_TYPE:
weights = rand_data.weights
means = rand_data.means
precisions = rand_data.precisions[covar_type]
g = GaussianMixture(
n_components=n_components,
random_state=rng,
weights_init=weights,
means_init=means,
precisions_init=precisions,
covariance_type=covar_type,
)
g.fit(X)
resp = g.predict_proba(X)
assert_array_almost_equal(resp.sum(axis=1), np.ones(n_samples))
assert_array_equal(g.weights_init, weights)
assert_array_equal(g.means_init, means)
assert_array_equal(g.precisions_init, precisions)
def test_gaussian_mixture_predict_predict_proba():
rng = np.random.RandomState(0)
rand_data = RandomData(rng)
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
Y = rand_data.Y
g = GaussianMixture(
n_components=rand_data.n_components,
random_state=rng,
weights_init=rand_data.weights,
means_init=rand_data.means,
precisions_init=rand_data.precisions[covar_type],
covariance_type=covar_type,
)
# Check a warning message arrive if we don't do fit
msg = (
"This GaussianMixture instance is not fitted yet. Call 'fit' "
"with appropriate arguments before using this estimator."
)
with pytest.raises(NotFittedError, match=msg):
g.predict(X)
g.fit(X)
Y_pred = g.predict(X)
Y_pred_proba = g.predict_proba(X).argmax(axis=1)
assert_array_equal(Y_pred, Y_pred_proba)
assert adjusted_rand_score(Y, Y_pred) > 0.95
@pytest.mark.filterwarnings("ignore:.*did not converge.*")
@pytest.mark.parametrize(
"seed, max_iter, tol",
[
(0, 2, 1e-7), # strict non-convergence
(1, 2, 1e-1), # loose non-convergence
(3, 300, 1e-7), # strict convergence
(4, 300, 1e-1), # loose convergence
],
)
def test_gaussian_mixture_fit_predict(seed, max_iter, tol):
rng = np.random.RandomState(seed)
rand_data = RandomData(rng)
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
Y = rand_data.Y
g = GaussianMixture(
n_components=rand_data.n_components,
random_state=rng,
weights_init=rand_data.weights,
means_init=rand_data.means,
precisions_init=rand_data.precisions[covar_type],
covariance_type=covar_type,
max_iter=max_iter,
tol=tol,
)
# check if fit_predict(X) is equivalent to fit(X).predict(X)
f = copy.deepcopy(g)
Y_pred1 = f.fit(X).predict(X)
Y_pred2 = g.fit_predict(X)
assert_array_equal(Y_pred1, Y_pred2)
assert adjusted_rand_score(Y, Y_pred2) > 0.95
def test_gaussian_mixture_fit_predict_n_init():
# Check that fit_predict is equivalent to fit.predict, when n_init > 1
X = np.random.RandomState(0).randn(1000, 5)
gm = GaussianMixture(n_components=5, n_init=5, random_state=0)
y_pred1 = gm.fit_predict(X)
y_pred2 = gm.predict(X)
assert_array_equal(y_pred1, y_pred2)
def test_gaussian_mixture_fit():
# recover the ground truth
rng = np.random.RandomState(0)
rand_data = RandomData(rng)
n_features = rand_data.n_features
n_components = rand_data.n_components
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
g = GaussianMixture(
n_components=n_components,
n_init=20,
reg_covar=0,
random_state=rng,
covariance_type=covar_type,
)
g.fit(X)
# needs more data to pass the test with rtol=1e-7
assert_allclose(
np.sort(g.weights_), np.sort(rand_data.weights), rtol=0.1, atol=1e-2
)
arg_idx1 = g.means_[:, 0].argsort()
arg_idx2 = rand_data.means[:, 0].argsort()
assert_allclose(
g.means_[arg_idx1], rand_data.means[arg_idx2], rtol=0.1, atol=1e-2
)
if covar_type == "full":
prec_pred = g.precisions_
prec_test = rand_data.precisions["full"]
elif covar_type == "tied":
prec_pred = np.array([g.precisions_] * n_components)
prec_test = np.array([rand_data.precisions["tied"]] * n_components)
elif covar_type == "spherical":
prec_pred = np.array([np.eye(n_features) * c for c in g.precisions_])
prec_test = np.array(
[np.eye(n_features) * c for c in rand_data.precisions["spherical"]]
)
elif covar_type == "diag":
prec_pred = np.array([np.diag(d) for d in g.precisions_])
prec_test = np.array([np.diag(d) for d in rand_data.precisions["diag"]])
arg_idx1 = np.trace(prec_pred, axis1=1, axis2=2).argsort()
arg_idx2 = np.trace(prec_test, axis1=1, axis2=2).argsort()
for k, h in zip(arg_idx1, arg_idx2):
ecov = EmpiricalCovariance()
ecov.covariance_ = prec_test[h]
# the accuracy depends on the number of data and randomness, rng
assert_allclose(ecov.error_norm(prec_pred[k]), 0, atol=0.15)
def test_gaussian_mixture_fit_best_params():
rng = np.random.RandomState(0)
rand_data = RandomData(rng)
n_components = rand_data.n_components
n_init = 10
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
g = GaussianMixture(
n_components=n_components,
n_init=1,
reg_covar=0,
random_state=rng,
covariance_type=covar_type,
)
ll = []
for _ in range(n_init):
g.fit(X)
ll.append(g.score(X))
ll = np.array(ll)
g_best = GaussianMixture(
n_components=n_components,
n_init=n_init,
reg_covar=0,
random_state=rng,
covariance_type=covar_type,
)
g_best.fit(X)
assert_almost_equal(ll.min(), g_best.score(X))
def test_gaussian_mixture_fit_convergence_warning():
rng = np.random.RandomState(0)
rand_data = RandomData(rng, scale=1)
n_components = rand_data.n_components
max_iter = 1
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
g = GaussianMixture(
n_components=n_components,
n_init=1,
max_iter=max_iter,
reg_covar=0,
random_state=rng,
covariance_type=covar_type,
)
msg = (
f"Initialization {max_iter} did not converge. Try different init "
"parameters, or increase max_iter, tol or check for degenerate"
" data."
)
with pytest.warns(ConvergenceWarning, match=msg):
g.fit(X)
def test_multiple_init():
# Test that multiple inits does not much worse than a single one
rng = np.random.RandomState(0)
n_samples, n_features, n_components = 50, 5, 2
X = rng.randn(n_samples, n_features)
for cv_type in COVARIANCE_TYPE:
train1 = (
GaussianMixture(
n_components=n_components, covariance_type=cv_type, random_state=0
)
.fit(X)
.score(X)
)
train2 = (
GaussianMixture(
n_components=n_components,
covariance_type=cv_type,
random_state=0,
n_init=5,
)
.fit(X)
.score(X)
)
assert train2 >= train1
def test_gaussian_mixture_n_parameters():
# Test that the right number of parameters is estimated
rng = np.random.RandomState(0)
n_samples, n_features, n_components = 50, 5, 2
X = rng.randn(n_samples, n_features)
n_params = {"spherical": 13, "diag": 21, "tied": 26, "full": 41}
for cv_type in COVARIANCE_TYPE:
g = GaussianMixture(
n_components=n_components, covariance_type=cv_type, random_state=rng
).fit(X)
assert g._n_parameters() == n_params[cv_type]
def test_bic_1d_1component():
# Test all of the covariance_types return the same BIC score for
# 1-dimensional, 1 component fits.
rng = np.random.RandomState(0)
n_samples, n_dim, n_components = 100, 1, 1
X = rng.randn(n_samples, n_dim)
bic_full = (
GaussianMixture(
n_components=n_components, covariance_type="full", random_state=rng
)
.fit(X)
.bic(X)
)
for covariance_type in ["tied", "diag", "spherical"]:
bic = (
GaussianMixture(
n_components=n_components,
covariance_type=covariance_type,
random_state=rng,
)
.fit(X)
.bic(X)
)
assert_almost_equal(bic_full, bic)
def test_gaussian_mixture_aic_bic():
# Test the aic and bic criteria
rng = np.random.RandomState(0)
n_samples, n_features, n_components = 50, 3, 2
X = rng.randn(n_samples, n_features)
# standard gaussian entropy
sgh = 0.5 * (
fast_logdet(np.cov(X.T, bias=1)) + n_features * (1 + np.log(2 * np.pi))
)
for cv_type in COVARIANCE_TYPE:
g = GaussianMixture(
n_components=n_components,
covariance_type=cv_type,
random_state=rng,
max_iter=200,
)
g.fit(X)
aic = 2 * n_samples * sgh + 2 * g._n_parameters()
bic = 2 * n_samples * sgh + np.log(n_samples) * g._n_parameters()
bound = n_features / np.sqrt(n_samples)
assert (g.aic(X) - aic) / n_samples < bound
assert (g.bic(X) - bic) / n_samples < bound
def test_gaussian_mixture_verbose():
rng = np.random.RandomState(0)
rand_data = RandomData(rng)
n_components = rand_data.n_components
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
g = GaussianMixture(
n_components=n_components,
n_init=1,
reg_covar=0,
random_state=rng,
covariance_type=covar_type,
verbose=1,
)
h = GaussianMixture(
n_components=n_components,
n_init=1,
reg_covar=0,
random_state=rng,
covariance_type=covar_type,
verbose=2,
)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
g.fit(X)
h.fit(X)
finally:
sys.stdout = old_stdout
@pytest.mark.filterwarnings("ignore:.*did not converge.*")
@pytest.mark.parametrize("seed", (0, 1, 2))
def test_warm_start(seed):
random_state = seed
rng = np.random.RandomState(random_state)
n_samples, n_features, n_components = 500, 2, 2
X = rng.rand(n_samples, n_features)
# Assert the warm_start give the same result for the same number of iter
g = GaussianMixture(
n_components=n_components,
n_init=1,
max_iter=2,
reg_covar=0,
random_state=random_state,
warm_start=False,
)
h = GaussianMixture(
n_components=n_components,
n_init=1,
max_iter=1,
reg_covar=0,
random_state=random_state,
warm_start=True,
)
g.fit(X)
score1 = h.fit(X).score(X)
score2 = h.fit(X).score(X)
assert_almost_equal(g.weights_, h.weights_)
assert_almost_equal(g.means_, h.means_)
assert_almost_equal(g.precisions_, h.precisions_)
assert score2 > score1
# Assert that by using warm_start we can converge to a good solution
g = GaussianMixture(
n_components=n_components,
n_init=1,
max_iter=5,
reg_covar=0,
random_state=random_state,
warm_start=False,
tol=1e-6,
)
h = GaussianMixture(
n_components=n_components,
n_init=1,
max_iter=5,
reg_covar=0,
random_state=random_state,
warm_start=True,
tol=1e-6,
)
g.fit(X)
assert not g.converged_
h.fit(X)
# depending on the data there is large variability in the number of
# refit necessary to converge due to the complete randomness of the
# data
for _ in range(1000):
h.fit(X)
if h.converged_:
break
assert h.converged_
@ignore_warnings(category=ConvergenceWarning)
def test_convergence_detected_with_warm_start():
# We check that convergence is detected when warm_start=True
rng = np.random.RandomState(0)
rand_data = RandomData(rng)
n_components = rand_data.n_components
X = rand_data.X["full"]
for max_iter in (1, 2, 50):
gmm = GaussianMixture(
n_components=n_components,
warm_start=True,
max_iter=max_iter,
random_state=rng,
)
for _ in range(100):
gmm.fit(X)
if gmm.converged_:
break
assert gmm.converged_
assert max_iter >= gmm.n_iter_
def test_score():
covar_type = "full"
rng = np.random.RandomState(0)
rand_data = RandomData(rng, scale=7)
n_components = rand_data.n_components
X = rand_data.X[covar_type]
# Check the error message if we don't call fit
gmm1 = GaussianMixture(
n_components=n_components,
n_init=1,
max_iter=1,
reg_covar=0,
random_state=rng,
covariance_type=covar_type,
)
msg = (
"This GaussianMixture instance is not fitted yet. Call 'fit' with "
"appropriate arguments before using this estimator."
)
with pytest.raises(NotFittedError, match=msg):
gmm1.score(X)
# Check score value
with warnings.catch_warnings():
warnings.simplefilter("ignore", ConvergenceWarning)
gmm1.fit(X)
gmm_score = gmm1.score(X)
gmm_score_proba = gmm1.score_samples(X).mean()
assert_almost_equal(gmm_score, gmm_score_proba)
# Check if the score increase
gmm2 = GaussianMixture(
n_components=n_components,
n_init=1,
reg_covar=0,
random_state=rng,
covariance_type=covar_type,
).fit(X)
assert gmm2.score(X) > gmm1.score(X)
def test_score_samples():
covar_type = "full"
rng = np.random.RandomState(0)
rand_data = RandomData(rng, scale=7)
n_components = rand_data.n_components
X = rand_data.X[covar_type]
# Check the error message if we don't call fit
gmm = GaussianMixture(
n_components=n_components,
n_init=1,
reg_covar=0,
random_state=rng,
covariance_type=covar_type,
)
msg = (
"This GaussianMixture instance is not fitted yet. Call 'fit' with "
"appropriate arguments before using this estimator."
)
with pytest.raises(NotFittedError, match=msg):
gmm.score_samples(X)
gmm_score_samples = gmm.fit(X).score_samples(X)
assert gmm_score_samples.shape[0] == rand_data.n_samples
def test_monotonic_likelihood():
# We check that each step of the EM without regularization improve
# monotonically the training set likelihood
rng = np.random.RandomState(0)
rand_data = RandomData(rng, scale=7)
n_components = rand_data.n_components
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
gmm = GaussianMixture(
n_components=n_components,
covariance_type=covar_type,
reg_covar=0,
warm_start=True,
max_iter=1,
random_state=rng,
tol=1e-7,
)
current_log_likelihood = -np.infty
with warnings.catch_warnings():
warnings.simplefilter("ignore", ConvergenceWarning)
# Do one training iteration at a time so we can make sure that the
# training log likelihood increases after each iteration.
for _ in range(600):
prev_log_likelihood = current_log_likelihood
current_log_likelihood = gmm.fit(X).score(X)
assert current_log_likelihood >= prev_log_likelihood
if gmm.converged_:
break
assert gmm.converged_
def test_regularisation():
# We train the GaussianMixture on degenerate data by defining two clusters
# of a 0 covariance.
rng = np.random.RandomState(0)
n_samples, n_features = 10, 5
X = np.vstack(
(np.ones((n_samples // 2, n_features)), np.zeros((n_samples // 2, n_features)))
)
for covar_type in COVARIANCE_TYPE:
gmm = GaussianMixture(
n_components=n_samples,
reg_covar=0,
covariance_type=covar_type,
random_state=rng,
)
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
msg = re.escape(
"Fitting the mixture model failed because some components have"
" ill-defined empirical covariance (for instance caused by "
"singleton or collapsed samples). Try to decrease the number "
"of components, or increase reg_covar."
)
with pytest.raises(ValueError, match=msg):
gmm.fit(X)
gmm.set_params(reg_covar=1e-6).fit(X)
def test_property():
rng = np.random.RandomState(0)
rand_data = RandomData(rng, scale=7)
n_components = rand_data.n_components
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
gmm = GaussianMixture(
n_components=n_components,
covariance_type=covar_type,
random_state=rng,
n_init=5,
)
gmm.fit(X)
if covar_type == "full":
for prec, covar in zip(gmm.precisions_, gmm.covariances_):
assert_array_almost_equal(linalg.inv(prec), covar)
elif covar_type == "tied":
assert_array_almost_equal(linalg.inv(gmm.precisions_), gmm.covariances_)
else:
assert_array_almost_equal(gmm.precisions_, 1.0 / gmm.covariances_)
def test_sample():
rng = np.random.RandomState(0)
rand_data = RandomData(rng, scale=7, n_components=3)
n_features, n_components = rand_data.n_features, rand_data.n_components
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
gmm = GaussianMixture(
n_components=n_components, covariance_type=covar_type, random_state=rng
)
# To sample we need that GaussianMixture is fitted
msg = "This GaussianMixture instance is not fitted"
with pytest.raises(NotFittedError, match=msg):
gmm.sample(0)
gmm.fit(X)
msg = "Invalid value for 'n_samples'"
with pytest.raises(ValueError, match=msg):
gmm.sample(0)
# Just to make sure the class samples correctly
n_samples = 20000
X_s, y_s = gmm.sample(n_samples)
for k in range(n_components):
if covar_type == "full":
assert_array_almost_equal(
gmm.covariances_[k], np.cov(X_s[y_s == k].T), decimal=1
)
elif covar_type == "tied":
assert_array_almost_equal(
gmm.covariances_, np.cov(X_s[y_s == k].T), decimal=1
)
elif covar_type == "diag":
assert_array_almost_equal(
gmm.covariances_[k], np.diag(np.cov(X_s[y_s == k].T)), decimal=1
)
else:
assert_array_almost_equal(
gmm.covariances_[k],
np.var(X_s[y_s == k] - gmm.means_[k]),
decimal=1,
)
means_s = np.array([np.mean(X_s[y_s == k], 0) for k in range(n_components)])
assert_array_almost_equal(gmm.means_, means_s, decimal=1)
# Check shapes of sampled data, see
# https://github.com/scikit-learn/scikit-learn/issues/7701
assert X_s.shape == (n_samples, n_features)
for sample_size in range(1, 100):
X_s, _ = gmm.sample(sample_size)
assert X_s.shape == (sample_size, n_features)
@ignore_warnings(category=ConvergenceWarning)
def test_init():
# We check that by increasing the n_init number we have a better solution
for random_state in range(15):
rand_data = RandomData(
np.random.RandomState(random_state), n_samples=50, scale=1
)
n_components = rand_data.n_components
X = rand_data.X["full"]
gmm1 = GaussianMixture(
n_components=n_components, n_init=1, max_iter=1, random_state=random_state
).fit(X)
gmm2 = GaussianMixture(
n_components=n_components, n_init=10, max_iter=1, random_state=random_state
).fit(X)
assert gmm2.lower_bound_ >= gmm1.lower_bound_
def test_gaussian_mixture_setting_best_params():
"""`GaussianMixture`'s best_parameters, `n_iter_` and `lower_bound_`
must be set appropriately in the case of divergence.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/18216
"""
rnd = np.random.RandomState(0)
n_samples = 30
X = rnd.uniform(size=(n_samples, 3))
# following initialization parameters were found to lead to divergence
means_init = np.array(
[
[0.670637869618158, 0.21038256107384043, 0.12892629765485303],
[0.09394051075844147, 0.5759464955561779, 0.929296197576212],
[0.5033230372781258, 0.9569852381759425, 0.08654043447295741],
[0.18578301420435747, 0.5531158970919143, 0.19388943970532435],
[0.4548589928173794, 0.35182513658825276, 0.568146063202464],
[0.609279894978321, 0.7929063819678847, 0.9620097270828052],
]
)
precisions_init = np.array(
[
999999.999604483,
999999.9990869573,
553.7603944542167,
204.78596008931834,
15.867423501783637,
85.4595728389735,
]
)
weights_init = [
0.03333333333333341,
0.03333333333333341,
0.06666666666666674,
0.06666666666666674,
0.7000000000000001,
0.10000000000000007,
]
gmm = GaussianMixture(
covariance_type="spherical",
reg_covar=0,
means_init=means_init,
weights_init=weights_init,
random_state=rnd,
n_components=len(weights_init),
precisions_init=precisions_init,
max_iter=1,
)
# ensure that no error is thrown during fit
gmm.fit(X)
# check that the fit did not converge
assert not gmm.converged_
# check that parameters are set for gmm
for attr in [
"weights_",
"means_",
"covariances_",
"precisions_cholesky_",
"n_iter_",
"lower_bound_",
]:
assert hasattr(gmm, attr)
@pytest.mark.parametrize(
"init_params", ["random", "random_from_data", "k-means++", "kmeans"]
)
def test_init_means_not_duplicated(init_params, global_random_seed):
# Check that all initialisations provide not duplicated starting means
rng = np.random.RandomState(global_random_seed)
rand_data = RandomData(rng, scale=5)
n_components = rand_data.n_components
X = rand_data.X["full"]
gmm = GaussianMixture(
n_components=n_components, init_params=init_params, random_state=rng, max_iter=0
)
gmm.fit(X)
means = gmm.means_
for i_mean, j_mean in itertools.combinations(means, r=2):
assert not np.allclose(i_mean, j_mean)
@pytest.mark.parametrize(
"init_params", ["random", "random_from_data", "k-means++", "kmeans"]
)
def test_means_for_all_inits(init_params, global_random_seed):
# Check fitted means properties for all initializations
rng = np.random.RandomState(global_random_seed)
rand_data = RandomData(rng, scale=5)
n_components = rand_data.n_components
X = rand_data.X["full"]
gmm = GaussianMixture(
n_components=n_components, init_params=init_params, random_state=rng
)
gmm.fit(X)
assert gmm.means_.shape == (n_components, X.shape[1])
assert np.all(X.min(axis=0) <= gmm.means_)
assert np.all(gmm.means_ <= X.max(axis=0))
assert gmm.converged_
def test_max_iter_zero():
# Check that max_iter=0 returns initialisation as expected
# Pick arbitrary initial means and check equal to max_iter=0
rng = np.random.RandomState(0)
rand_data = RandomData(rng, scale=5)
n_components = rand_data.n_components
X = rand_data.X["full"]
means_init = [[20, 30], [30, 25]]
gmm = GaussianMixture(
n_components=n_components,
random_state=rng,
means_init=means_init,
tol=1e-06,
max_iter=0,
)
gmm.fit(X)
assert_allclose(gmm.means_, means_init)
def test_gaussian_mixture_precisions_init_diag():
"""Check that we properly initialize `precision_cholesky_` when we manually
provide the precision matrix.
In this regard, we check the consistency between estimating the precision
matrix and providing the same precision matrix as initialization. It should
lead to the same results with the same number of iterations.
If the initialization is wrong then the number of iterations will increase.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/16944
"""
# generate a toy dataset
n_samples = 300
rng = np.random.RandomState(0)
shifted_gaussian = rng.randn(n_samples, 2) + np.array([20, 20])
C = np.array([[0.0, -0.7], [3.5, 0.7]])
stretched_gaussian = np.dot(rng.randn(n_samples, 2), C)
X = np.vstack([shifted_gaussian, stretched_gaussian])
# common parameters to check the consistency of precision initialization
n_components, covariance_type, reg_covar, random_state = 2, "diag", 1e-6, 0
# execute the manual initialization to compute the precision matrix:
# - run KMeans to have an initial guess
# - estimate the covariance
# - compute the precision matrix from the estimated covariance
resp = np.zeros((X.shape[0], n_components))
label = (
KMeans(n_clusters=n_components, n_init=1, random_state=random_state)
.fit(X)
.labels_
)
resp[np.arange(X.shape[0]), label] = 1
_, _, covariance = _estimate_gaussian_parameters(
X, resp, reg_covar=reg_covar, covariance_type=covariance_type
)
precisions_init = 1 / covariance
gm_with_init = GaussianMixture(
n_components=n_components,
covariance_type=covariance_type,
reg_covar=reg_covar,
precisions_init=precisions_init,
random_state=random_state,
).fit(X)
gm_without_init = GaussianMixture(
n_components=n_components,
covariance_type=covariance_type,
reg_covar=reg_covar,
random_state=random_state,
).fit(X)
assert gm_without_init.n_iter_ == gm_with_init.n_iter_
assert_allclose(
gm_with_init.precisions_cholesky_, gm_without_init.precisions_cholesky_
)
def test_gaussian_mixture_single_component_stable():
"""
Non-regression test for #23032 ensuring 1-component GM works on only a
few samples.
"""
rng = np.random.RandomState(0)
X = rng.multivariate_normal(np.zeros(2), np.identity(2), size=3)
gm = GaussianMixture(n_components=1)
gm.fit(X).sample()
|