File: test_gaussian_mixture.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (1337 lines) | stat: -rw-r--r-- 44,964 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
# Author: Wei Xue <xuewei4d@gmail.com>
#         Thierry Guillemot <thierry.guillemot.work@gmail.com>
# License: BSD 3 clause

import itertools
import re
import sys
import copy
import warnings
import pytest

import numpy as np
from scipy import stats, linalg

from sklearn.cluster import KMeans
from sklearn.covariance import EmpiricalCovariance
from sklearn.datasets import make_spd_matrix
from io import StringIO
from sklearn.metrics.cluster import adjusted_rand_score
from sklearn.mixture import GaussianMixture
from sklearn.mixture._gaussian_mixture import (
    _estimate_gaussian_covariances_full,
    _estimate_gaussian_covariances_tied,
    _estimate_gaussian_covariances_diag,
    _estimate_gaussian_covariances_spherical,
    _estimate_gaussian_parameters,
    _compute_precision_cholesky,
    _compute_log_det_cholesky,
)
from sklearn.exceptions import ConvergenceWarning, NotFittedError
from sklearn.utils.extmath import fast_logdet
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import ignore_warnings


COVARIANCE_TYPE = ["full", "tied", "diag", "spherical"]


def generate_data(n_samples, n_features, weights, means, precisions, covariance_type):
    rng = np.random.RandomState(0)

    X = []
    if covariance_type == "spherical":
        for _, (w, m, c) in enumerate(zip(weights, means, precisions["spherical"])):
            X.append(
                rng.multivariate_normal(
                    m, c * np.eye(n_features), int(np.round(w * n_samples))
                )
            )
    if covariance_type == "diag":
        for _, (w, m, c) in enumerate(zip(weights, means, precisions["diag"])):
            X.append(
                rng.multivariate_normal(m, np.diag(c), int(np.round(w * n_samples)))
            )
    if covariance_type == "tied":
        for _, (w, m) in enumerate(zip(weights, means)):
            X.append(
                rng.multivariate_normal(
                    m, precisions["tied"], int(np.round(w * n_samples))
                )
            )
    if covariance_type == "full":
        for _, (w, m, c) in enumerate(zip(weights, means, precisions["full"])):
            X.append(rng.multivariate_normal(m, c, int(np.round(w * n_samples))))

    X = np.vstack(X)
    return X


class RandomData:
    def __init__(self, rng, n_samples=200, n_components=2, n_features=2, scale=50):
        self.n_samples = n_samples
        self.n_components = n_components
        self.n_features = n_features

        self.weights = rng.rand(n_components)
        self.weights = self.weights / self.weights.sum()
        self.means = rng.rand(n_components, n_features) * scale
        self.covariances = {
            "spherical": 0.5 + rng.rand(n_components),
            "diag": (0.5 + rng.rand(n_components, n_features)) ** 2,
            "tied": make_spd_matrix(n_features, random_state=rng),
            "full": np.array(
                [
                    make_spd_matrix(n_features, random_state=rng) * 0.5
                    for _ in range(n_components)
                ]
            ),
        }
        self.precisions = {
            "spherical": 1.0 / self.covariances["spherical"],
            "diag": 1.0 / self.covariances["diag"],
            "tied": linalg.inv(self.covariances["tied"]),
            "full": np.array(
                [linalg.inv(covariance) for covariance in self.covariances["full"]]
            ),
        }

        self.X = dict(
            zip(
                COVARIANCE_TYPE,
                [
                    generate_data(
                        n_samples,
                        n_features,
                        self.weights,
                        self.means,
                        self.covariances,
                        covar_type,
                    )
                    for covar_type in COVARIANCE_TYPE
                ],
            )
        )
        self.Y = np.hstack(
            [
                np.full(int(np.round(w * n_samples)), k, dtype=int)
                for k, w in enumerate(self.weights)
            ]
        )


def test_gaussian_mixture_attributes():
    # test bad parameters
    rng = np.random.RandomState(0)
    X = rng.rand(10, 2)

    # test good parameters
    n_components, tol, n_init, max_iter, reg_covar = 2, 1e-4, 3, 30, 1e-1
    covariance_type, init_params = "full", "random"
    gmm = GaussianMixture(
        n_components=n_components,
        tol=tol,
        n_init=n_init,
        max_iter=max_iter,
        reg_covar=reg_covar,
        covariance_type=covariance_type,
        init_params=init_params,
    ).fit(X)

    assert gmm.n_components == n_components
    assert gmm.covariance_type == covariance_type
    assert gmm.tol == tol
    assert gmm.reg_covar == reg_covar
    assert gmm.max_iter == max_iter
    assert gmm.n_init == n_init
    assert gmm.init_params == init_params


def test_check_weights():
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng)

    n_components = rand_data.n_components
    X = rand_data.X["full"]

    g = GaussianMixture(n_components=n_components)

    # Check bad shape
    weights_bad_shape = rng.rand(n_components, 1)
    g.weights_init = weights_bad_shape
    msg = re.escape(
        "The parameter 'weights' should have the shape of "
        f"({n_components},), but got {str(weights_bad_shape.shape)}"
    )
    with pytest.raises(ValueError, match=msg):
        g.fit(X)

    # Check bad range
    weights_bad_range = rng.rand(n_components) + 1
    g.weights_init = weights_bad_range
    msg = re.escape(
        "The parameter 'weights' should be in the range [0, 1], but got"
        f" max value {np.min(weights_bad_range):.5f}, "
        f"min value {np.max(weights_bad_range):.5f}"
    )
    with pytest.raises(ValueError, match=msg):
        g.fit(X)

    # Check bad normalization
    weights_bad_norm = rng.rand(n_components)
    weights_bad_norm = weights_bad_norm / (weights_bad_norm.sum() + 1)
    g.weights_init = weights_bad_norm
    msg = re.escape(
        "The parameter 'weights' should be normalized, "
        f"but got sum(weights) = {np.sum(weights_bad_norm):.5f}"
    )
    with pytest.raises(ValueError, match=msg):
        g.fit(X)

    # Check good weights matrix
    weights = rand_data.weights
    g = GaussianMixture(weights_init=weights, n_components=n_components)
    g.fit(X)
    assert_array_equal(weights, g.weights_init)


def test_check_means():
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng)

    n_components, n_features = rand_data.n_components, rand_data.n_features
    X = rand_data.X["full"]

    g = GaussianMixture(n_components=n_components)

    # Check means bad shape
    means_bad_shape = rng.rand(n_components + 1, n_features)
    g.means_init = means_bad_shape
    msg = "The parameter 'means' should have the shape of "
    with pytest.raises(ValueError, match=msg):
        g.fit(X)

    # Check good means matrix
    means = rand_data.means
    g.means_init = means
    g.fit(X)
    assert_array_equal(means, g.means_init)


def test_check_precisions():
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng)

    n_components, n_features = rand_data.n_components, rand_data.n_features

    # Define the bad precisions for each covariance_type
    precisions_bad_shape = {
        "full": np.ones((n_components + 1, n_features, n_features)),
        "tied": np.ones((n_features + 1, n_features + 1)),
        "diag": np.ones((n_components + 1, n_features)),
        "spherical": np.ones((n_components + 1)),
    }

    # Define not positive-definite precisions
    precisions_not_pos = np.ones((n_components, n_features, n_features))
    precisions_not_pos[0] = np.eye(n_features)
    precisions_not_pos[0, 0, 0] = -1.0

    precisions_not_positive = {
        "full": precisions_not_pos,
        "tied": precisions_not_pos[0],
        "diag": np.full((n_components, n_features), -1.0),
        "spherical": np.full(n_components, -1.0),
    }

    not_positive_errors = {
        "full": "symmetric, positive-definite",
        "tied": "symmetric, positive-definite",
        "diag": "positive",
        "spherical": "positive",
    }

    for covar_type in COVARIANCE_TYPE:
        X = RandomData(rng).X[covar_type]
        g = GaussianMixture(
            n_components=n_components, covariance_type=covar_type, random_state=rng
        )

        # Check precisions with bad shapes
        g.precisions_init = precisions_bad_shape[covar_type]
        msg = f"The parameter '{covar_type} precision' should have the shape of"
        with pytest.raises(ValueError, match=msg):
            g.fit(X)

        # Check not positive precisions
        g.precisions_init = precisions_not_positive[covar_type]
        msg = f"'{covar_type} precision' should be {not_positive_errors[covar_type]}"
        with pytest.raises(ValueError, match=msg):
            g.fit(X)

        # Check the correct init of precisions_init
        g.precisions_init = rand_data.precisions[covar_type]
        g.fit(X)
        assert_array_equal(rand_data.precisions[covar_type], g.precisions_init)


def test_suffstat_sk_full():
    # compare the precision matrix compute from the
    # EmpiricalCovariance.covariance fitted on X*sqrt(resp)
    # with _sufficient_sk_full, n_components=1
    rng = np.random.RandomState(0)
    n_samples, n_features = 500, 2

    # special case 1, assuming data is "centered"
    X = rng.rand(n_samples, n_features)
    resp = rng.rand(n_samples, 1)
    X_resp = np.sqrt(resp) * X
    nk = np.array([n_samples])
    xk = np.zeros((1, n_features))
    covars_pred = _estimate_gaussian_covariances_full(resp, X, nk, xk, 0)
    ecov = EmpiricalCovariance(assume_centered=True)
    ecov.fit(X_resp)
    assert_almost_equal(ecov.error_norm(covars_pred[0], norm="frobenius"), 0)
    assert_almost_equal(ecov.error_norm(covars_pred[0], norm="spectral"), 0)

    # check the precision computation
    precs_chol_pred = _compute_precision_cholesky(covars_pred, "full")
    precs_pred = np.array([np.dot(prec, prec.T) for prec in precs_chol_pred])
    precs_est = np.array([linalg.inv(cov) for cov in covars_pred])
    assert_array_almost_equal(precs_est, precs_pred)

    # special case 2, assuming resp are all ones
    resp = np.ones((n_samples, 1))
    nk = np.array([n_samples])
    xk = X.mean(axis=0).reshape((1, -1))
    covars_pred = _estimate_gaussian_covariances_full(resp, X, nk, xk, 0)
    ecov = EmpiricalCovariance(assume_centered=False)
    ecov.fit(X)
    assert_almost_equal(ecov.error_norm(covars_pred[0], norm="frobenius"), 0)
    assert_almost_equal(ecov.error_norm(covars_pred[0], norm="spectral"), 0)

    # check the precision computation
    precs_chol_pred = _compute_precision_cholesky(covars_pred, "full")
    precs_pred = np.array([np.dot(prec, prec.T) for prec in precs_chol_pred])
    precs_est = np.array([linalg.inv(cov) for cov in covars_pred])
    assert_array_almost_equal(precs_est, precs_pred)


def test_suffstat_sk_tied():
    # use equation Nk * Sk / N = S_tied
    rng = np.random.RandomState(0)
    n_samples, n_features, n_components = 500, 2, 2

    resp = rng.rand(n_samples, n_components)
    resp = resp / resp.sum(axis=1)[:, np.newaxis]
    X = rng.rand(n_samples, n_features)
    nk = resp.sum(axis=0)
    xk = np.dot(resp.T, X) / nk[:, np.newaxis]

    covars_pred_full = _estimate_gaussian_covariances_full(resp, X, nk, xk, 0)
    covars_pred_full = (
        np.sum(nk[:, np.newaxis, np.newaxis] * covars_pred_full, 0) / n_samples
    )

    covars_pred_tied = _estimate_gaussian_covariances_tied(resp, X, nk, xk, 0)

    ecov = EmpiricalCovariance()
    ecov.covariance_ = covars_pred_full
    assert_almost_equal(ecov.error_norm(covars_pred_tied, norm="frobenius"), 0)
    assert_almost_equal(ecov.error_norm(covars_pred_tied, norm="spectral"), 0)

    # check the precision computation
    precs_chol_pred = _compute_precision_cholesky(covars_pred_tied, "tied")
    precs_pred = np.dot(precs_chol_pred, precs_chol_pred.T)
    precs_est = linalg.inv(covars_pred_tied)
    assert_array_almost_equal(precs_est, precs_pred)


def test_suffstat_sk_diag():
    # test against 'full' case
    rng = np.random.RandomState(0)
    n_samples, n_features, n_components = 500, 2, 2

    resp = rng.rand(n_samples, n_components)
    resp = resp / resp.sum(axis=1)[:, np.newaxis]
    X = rng.rand(n_samples, n_features)
    nk = resp.sum(axis=0)
    xk = np.dot(resp.T, X) / nk[:, np.newaxis]
    covars_pred_full = _estimate_gaussian_covariances_full(resp, X, nk, xk, 0)
    covars_pred_diag = _estimate_gaussian_covariances_diag(resp, X, nk, xk, 0)

    ecov = EmpiricalCovariance()
    for cov_full, cov_diag in zip(covars_pred_full, covars_pred_diag):
        ecov.covariance_ = np.diag(np.diag(cov_full))
        cov_diag = np.diag(cov_diag)
        assert_almost_equal(ecov.error_norm(cov_diag, norm="frobenius"), 0)
        assert_almost_equal(ecov.error_norm(cov_diag, norm="spectral"), 0)

    # check the precision computation
    precs_chol_pred = _compute_precision_cholesky(covars_pred_diag, "diag")
    assert_almost_equal(covars_pred_diag, 1.0 / precs_chol_pred**2)


def test_gaussian_suffstat_sk_spherical():
    # computing spherical covariance equals to the variance of one-dimension
    # data after flattening, n_components=1
    rng = np.random.RandomState(0)
    n_samples, n_features = 500, 2

    X = rng.rand(n_samples, n_features)
    X = X - X.mean()
    resp = np.ones((n_samples, 1))
    nk = np.array([n_samples])
    xk = X.mean()
    covars_pred_spherical = _estimate_gaussian_covariances_spherical(resp, X, nk, xk, 0)
    covars_pred_spherical2 = np.dot(X.flatten().T, X.flatten()) / (
        n_features * n_samples
    )
    assert_almost_equal(covars_pred_spherical, covars_pred_spherical2)

    # check the precision computation
    precs_chol_pred = _compute_precision_cholesky(covars_pred_spherical, "spherical")
    assert_almost_equal(covars_pred_spherical, 1.0 / precs_chol_pred**2)


def test_compute_log_det_cholesky():
    n_features = 2
    rand_data = RandomData(np.random.RandomState(0))

    for covar_type in COVARIANCE_TYPE:
        covariance = rand_data.covariances[covar_type]

        if covar_type == "full":
            predected_det = np.array([linalg.det(cov) for cov in covariance])
        elif covar_type == "tied":
            predected_det = linalg.det(covariance)
        elif covar_type == "diag":
            predected_det = np.array([np.prod(cov) for cov in covariance])
        elif covar_type == "spherical":
            predected_det = covariance**n_features

        # We compute the cholesky decomposition of the covariance matrix
        expected_det = _compute_log_det_cholesky(
            _compute_precision_cholesky(covariance, covar_type),
            covar_type,
            n_features=n_features,
        )
        assert_array_almost_equal(expected_det, -0.5 * np.log(predected_det))


def _naive_lmvnpdf_diag(X, means, covars):
    resp = np.empty((len(X), len(means)))
    stds = np.sqrt(covars)
    for i, (mean, std) in enumerate(zip(means, stds)):
        resp[:, i] = stats.norm.logpdf(X, mean, std).sum(axis=1)
    return resp


def test_gaussian_mixture_log_probabilities():
    from sklearn.mixture._gaussian_mixture import _estimate_log_gaussian_prob

    # test against with _naive_lmvnpdf_diag
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng)
    n_samples = 500
    n_features = rand_data.n_features
    n_components = rand_data.n_components

    means = rand_data.means
    covars_diag = rng.rand(n_components, n_features)
    X = rng.rand(n_samples, n_features)
    log_prob_naive = _naive_lmvnpdf_diag(X, means, covars_diag)

    # full covariances
    precs_full = np.array([np.diag(1.0 / np.sqrt(x)) for x in covars_diag])

    log_prob = _estimate_log_gaussian_prob(X, means, precs_full, "full")
    assert_array_almost_equal(log_prob, log_prob_naive)

    # diag covariances
    precs_chol_diag = 1.0 / np.sqrt(covars_diag)
    log_prob = _estimate_log_gaussian_prob(X, means, precs_chol_diag, "diag")
    assert_array_almost_equal(log_prob, log_prob_naive)

    # tied
    covars_tied = np.array([x for x in covars_diag]).mean(axis=0)
    precs_tied = np.diag(np.sqrt(1.0 / covars_tied))

    log_prob_naive = _naive_lmvnpdf_diag(X, means, [covars_tied] * n_components)
    log_prob = _estimate_log_gaussian_prob(X, means, precs_tied, "tied")

    assert_array_almost_equal(log_prob, log_prob_naive)

    # spherical
    covars_spherical = covars_diag.mean(axis=1)
    precs_spherical = 1.0 / np.sqrt(covars_diag.mean(axis=1))
    log_prob_naive = _naive_lmvnpdf_diag(
        X, means, [[k] * n_features for k in covars_spherical]
    )
    log_prob = _estimate_log_gaussian_prob(X, means, precs_spherical, "spherical")
    assert_array_almost_equal(log_prob, log_prob_naive)


# skip tests on weighted_log_probabilities, log_weights


def test_gaussian_mixture_estimate_log_prob_resp():
    # test whether responsibilities are normalized
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=5)
    n_samples = rand_data.n_samples
    n_features = rand_data.n_features
    n_components = rand_data.n_components

    X = rng.rand(n_samples, n_features)
    for covar_type in COVARIANCE_TYPE:
        weights = rand_data.weights
        means = rand_data.means
        precisions = rand_data.precisions[covar_type]
        g = GaussianMixture(
            n_components=n_components,
            random_state=rng,
            weights_init=weights,
            means_init=means,
            precisions_init=precisions,
            covariance_type=covar_type,
        )
        g.fit(X)
        resp = g.predict_proba(X)
        assert_array_almost_equal(resp.sum(axis=1), np.ones(n_samples))
        assert_array_equal(g.weights_init, weights)
        assert_array_equal(g.means_init, means)
        assert_array_equal(g.precisions_init, precisions)


def test_gaussian_mixture_predict_predict_proba():
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng)
    for covar_type in COVARIANCE_TYPE:
        X = rand_data.X[covar_type]
        Y = rand_data.Y
        g = GaussianMixture(
            n_components=rand_data.n_components,
            random_state=rng,
            weights_init=rand_data.weights,
            means_init=rand_data.means,
            precisions_init=rand_data.precisions[covar_type],
            covariance_type=covar_type,
        )

        # Check a warning message arrive if we don't do fit
        msg = (
            "This GaussianMixture instance is not fitted yet. Call 'fit' "
            "with appropriate arguments before using this estimator."
        )
        with pytest.raises(NotFittedError, match=msg):
            g.predict(X)

        g.fit(X)
        Y_pred = g.predict(X)
        Y_pred_proba = g.predict_proba(X).argmax(axis=1)
        assert_array_equal(Y_pred, Y_pred_proba)
        assert adjusted_rand_score(Y, Y_pred) > 0.95


@pytest.mark.filterwarnings("ignore:.*did not converge.*")
@pytest.mark.parametrize(
    "seed, max_iter, tol",
    [
        (0, 2, 1e-7),  # strict non-convergence
        (1, 2, 1e-1),  # loose non-convergence
        (3, 300, 1e-7),  # strict convergence
        (4, 300, 1e-1),  # loose convergence
    ],
)
def test_gaussian_mixture_fit_predict(seed, max_iter, tol):
    rng = np.random.RandomState(seed)
    rand_data = RandomData(rng)
    for covar_type in COVARIANCE_TYPE:
        X = rand_data.X[covar_type]
        Y = rand_data.Y
        g = GaussianMixture(
            n_components=rand_data.n_components,
            random_state=rng,
            weights_init=rand_data.weights,
            means_init=rand_data.means,
            precisions_init=rand_data.precisions[covar_type],
            covariance_type=covar_type,
            max_iter=max_iter,
            tol=tol,
        )

        # check if fit_predict(X) is equivalent to fit(X).predict(X)
        f = copy.deepcopy(g)
        Y_pred1 = f.fit(X).predict(X)
        Y_pred2 = g.fit_predict(X)
        assert_array_equal(Y_pred1, Y_pred2)
        assert adjusted_rand_score(Y, Y_pred2) > 0.95


def test_gaussian_mixture_fit_predict_n_init():
    # Check that fit_predict is equivalent to fit.predict, when n_init > 1
    X = np.random.RandomState(0).randn(1000, 5)
    gm = GaussianMixture(n_components=5, n_init=5, random_state=0)
    y_pred1 = gm.fit_predict(X)
    y_pred2 = gm.predict(X)
    assert_array_equal(y_pred1, y_pred2)


def test_gaussian_mixture_fit():
    # recover the ground truth
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng)
    n_features = rand_data.n_features
    n_components = rand_data.n_components

    for covar_type in COVARIANCE_TYPE:
        X = rand_data.X[covar_type]
        g = GaussianMixture(
            n_components=n_components,
            n_init=20,
            reg_covar=0,
            random_state=rng,
            covariance_type=covar_type,
        )
        g.fit(X)

        # needs more data to pass the test with rtol=1e-7
        assert_allclose(
            np.sort(g.weights_), np.sort(rand_data.weights), rtol=0.1, atol=1e-2
        )

        arg_idx1 = g.means_[:, 0].argsort()
        arg_idx2 = rand_data.means[:, 0].argsort()
        assert_allclose(
            g.means_[arg_idx1], rand_data.means[arg_idx2], rtol=0.1, atol=1e-2
        )

        if covar_type == "full":
            prec_pred = g.precisions_
            prec_test = rand_data.precisions["full"]
        elif covar_type == "tied":
            prec_pred = np.array([g.precisions_] * n_components)
            prec_test = np.array([rand_data.precisions["tied"]] * n_components)
        elif covar_type == "spherical":
            prec_pred = np.array([np.eye(n_features) * c for c in g.precisions_])
            prec_test = np.array(
                [np.eye(n_features) * c for c in rand_data.precisions["spherical"]]
            )
        elif covar_type == "diag":
            prec_pred = np.array([np.diag(d) for d in g.precisions_])
            prec_test = np.array([np.diag(d) for d in rand_data.precisions["diag"]])

        arg_idx1 = np.trace(prec_pred, axis1=1, axis2=2).argsort()
        arg_idx2 = np.trace(prec_test, axis1=1, axis2=2).argsort()
        for k, h in zip(arg_idx1, arg_idx2):
            ecov = EmpiricalCovariance()
            ecov.covariance_ = prec_test[h]
            # the accuracy depends on the number of data and randomness, rng
            assert_allclose(ecov.error_norm(prec_pred[k]), 0, atol=0.15)


def test_gaussian_mixture_fit_best_params():
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng)
    n_components = rand_data.n_components
    n_init = 10
    for covar_type in COVARIANCE_TYPE:
        X = rand_data.X[covar_type]
        g = GaussianMixture(
            n_components=n_components,
            n_init=1,
            reg_covar=0,
            random_state=rng,
            covariance_type=covar_type,
        )
        ll = []
        for _ in range(n_init):
            g.fit(X)
            ll.append(g.score(X))
        ll = np.array(ll)
        g_best = GaussianMixture(
            n_components=n_components,
            n_init=n_init,
            reg_covar=0,
            random_state=rng,
            covariance_type=covar_type,
        )
        g_best.fit(X)
        assert_almost_equal(ll.min(), g_best.score(X))


def test_gaussian_mixture_fit_convergence_warning():
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=1)
    n_components = rand_data.n_components
    max_iter = 1
    for covar_type in COVARIANCE_TYPE:
        X = rand_data.X[covar_type]
        g = GaussianMixture(
            n_components=n_components,
            n_init=1,
            max_iter=max_iter,
            reg_covar=0,
            random_state=rng,
            covariance_type=covar_type,
        )
        msg = (
            f"Initialization {max_iter} did not converge. Try different init "
            "parameters, or increase max_iter, tol or check for degenerate"
            " data."
        )
        with pytest.warns(ConvergenceWarning, match=msg):
            g.fit(X)


def test_multiple_init():
    # Test that multiple inits does not much worse than a single one
    rng = np.random.RandomState(0)
    n_samples, n_features, n_components = 50, 5, 2
    X = rng.randn(n_samples, n_features)
    for cv_type in COVARIANCE_TYPE:
        train1 = (
            GaussianMixture(
                n_components=n_components, covariance_type=cv_type, random_state=0
            )
            .fit(X)
            .score(X)
        )
        train2 = (
            GaussianMixture(
                n_components=n_components,
                covariance_type=cv_type,
                random_state=0,
                n_init=5,
            )
            .fit(X)
            .score(X)
        )
        assert train2 >= train1


def test_gaussian_mixture_n_parameters():
    # Test that the right number of parameters is estimated
    rng = np.random.RandomState(0)
    n_samples, n_features, n_components = 50, 5, 2
    X = rng.randn(n_samples, n_features)
    n_params = {"spherical": 13, "diag": 21, "tied": 26, "full": 41}
    for cv_type in COVARIANCE_TYPE:
        g = GaussianMixture(
            n_components=n_components, covariance_type=cv_type, random_state=rng
        ).fit(X)
        assert g._n_parameters() == n_params[cv_type]


def test_bic_1d_1component():
    # Test all of the covariance_types return the same BIC score for
    # 1-dimensional, 1 component fits.
    rng = np.random.RandomState(0)
    n_samples, n_dim, n_components = 100, 1, 1
    X = rng.randn(n_samples, n_dim)
    bic_full = (
        GaussianMixture(
            n_components=n_components, covariance_type="full", random_state=rng
        )
        .fit(X)
        .bic(X)
    )
    for covariance_type in ["tied", "diag", "spherical"]:
        bic = (
            GaussianMixture(
                n_components=n_components,
                covariance_type=covariance_type,
                random_state=rng,
            )
            .fit(X)
            .bic(X)
        )
        assert_almost_equal(bic_full, bic)


def test_gaussian_mixture_aic_bic():
    # Test the aic and bic criteria
    rng = np.random.RandomState(0)
    n_samples, n_features, n_components = 50, 3, 2
    X = rng.randn(n_samples, n_features)
    # standard gaussian entropy
    sgh = 0.5 * (
        fast_logdet(np.cov(X.T, bias=1)) + n_features * (1 + np.log(2 * np.pi))
    )
    for cv_type in COVARIANCE_TYPE:
        g = GaussianMixture(
            n_components=n_components,
            covariance_type=cv_type,
            random_state=rng,
            max_iter=200,
        )
        g.fit(X)
        aic = 2 * n_samples * sgh + 2 * g._n_parameters()
        bic = 2 * n_samples * sgh + np.log(n_samples) * g._n_parameters()
        bound = n_features / np.sqrt(n_samples)
        assert (g.aic(X) - aic) / n_samples < bound
        assert (g.bic(X) - bic) / n_samples < bound


def test_gaussian_mixture_verbose():
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng)
    n_components = rand_data.n_components
    for covar_type in COVARIANCE_TYPE:
        X = rand_data.X[covar_type]
        g = GaussianMixture(
            n_components=n_components,
            n_init=1,
            reg_covar=0,
            random_state=rng,
            covariance_type=covar_type,
            verbose=1,
        )
        h = GaussianMixture(
            n_components=n_components,
            n_init=1,
            reg_covar=0,
            random_state=rng,
            covariance_type=covar_type,
            verbose=2,
        )
        old_stdout = sys.stdout
        sys.stdout = StringIO()
        try:
            g.fit(X)
            h.fit(X)
        finally:
            sys.stdout = old_stdout


@pytest.mark.filterwarnings("ignore:.*did not converge.*")
@pytest.mark.parametrize("seed", (0, 1, 2))
def test_warm_start(seed):
    random_state = seed
    rng = np.random.RandomState(random_state)
    n_samples, n_features, n_components = 500, 2, 2
    X = rng.rand(n_samples, n_features)

    # Assert the warm_start give the same result for the same number of iter
    g = GaussianMixture(
        n_components=n_components,
        n_init=1,
        max_iter=2,
        reg_covar=0,
        random_state=random_state,
        warm_start=False,
    )
    h = GaussianMixture(
        n_components=n_components,
        n_init=1,
        max_iter=1,
        reg_covar=0,
        random_state=random_state,
        warm_start=True,
    )

    g.fit(X)
    score1 = h.fit(X).score(X)
    score2 = h.fit(X).score(X)

    assert_almost_equal(g.weights_, h.weights_)
    assert_almost_equal(g.means_, h.means_)
    assert_almost_equal(g.precisions_, h.precisions_)
    assert score2 > score1

    # Assert that by using warm_start we can converge to a good solution
    g = GaussianMixture(
        n_components=n_components,
        n_init=1,
        max_iter=5,
        reg_covar=0,
        random_state=random_state,
        warm_start=False,
        tol=1e-6,
    )
    h = GaussianMixture(
        n_components=n_components,
        n_init=1,
        max_iter=5,
        reg_covar=0,
        random_state=random_state,
        warm_start=True,
        tol=1e-6,
    )

    g.fit(X)
    assert not g.converged_

    h.fit(X)
    # depending on the data there is large variability in the number of
    # refit necessary to converge due to the complete randomness of the
    # data
    for _ in range(1000):
        h.fit(X)
        if h.converged_:
            break
    assert h.converged_


@ignore_warnings(category=ConvergenceWarning)
def test_convergence_detected_with_warm_start():
    # We check that convergence is detected when warm_start=True
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng)
    n_components = rand_data.n_components
    X = rand_data.X["full"]

    for max_iter in (1, 2, 50):
        gmm = GaussianMixture(
            n_components=n_components,
            warm_start=True,
            max_iter=max_iter,
            random_state=rng,
        )
        for _ in range(100):
            gmm.fit(X)
            if gmm.converged_:
                break
        assert gmm.converged_
        assert max_iter >= gmm.n_iter_


def test_score():
    covar_type = "full"
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=7)
    n_components = rand_data.n_components
    X = rand_data.X[covar_type]

    # Check the error message if we don't call fit
    gmm1 = GaussianMixture(
        n_components=n_components,
        n_init=1,
        max_iter=1,
        reg_covar=0,
        random_state=rng,
        covariance_type=covar_type,
    )
    msg = (
        "This GaussianMixture instance is not fitted yet. Call 'fit' with "
        "appropriate arguments before using this estimator."
    )
    with pytest.raises(NotFittedError, match=msg):
        gmm1.score(X)

    # Check score value
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", ConvergenceWarning)
        gmm1.fit(X)
    gmm_score = gmm1.score(X)
    gmm_score_proba = gmm1.score_samples(X).mean()
    assert_almost_equal(gmm_score, gmm_score_proba)

    # Check if the score increase
    gmm2 = GaussianMixture(
        n_components=n_components,
        n_init=1,
        reg_covar=0,
        random_state=rng,
        covariance_type=covar_type,
    ).fit(X)
    assert gmm2.score(X) > gmm1.score(X)


def test_score_samples():
    covar_type = "full"
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=7)
    n_components = rand_data.n_components
    X = rand_data.X[covar_type]

    # Check the error message if we don't call fit
    gmm = GaussianMixture(
        n_components=n_components,
        n_init=1,
        reg_covar=0,
        random_state=rng,
        covariance_type=covar_type,
    )
    msg = (
        "This GaussianMixture instance is not fitted yet. Call 'fit' with "
        "appropriate arguments before using this estimator."
    )
    with pytest.raises(NotFittedError, match=msg):
        gmm.score_samples(X)

    gmm_score_samples = gmm.fit(X).score_samples(X)
    assert gmm_score_samples.shape[0] == rand_data.n_samples


def test_monotonic_likelihood():
    # We check that each step of the EM without regularization improve
    # monotonically the training set likelihood
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=7)
    n_components = rand_data.n_components

    for covar_type in COVARIANCE_TYPE:
        X = rand_data.X[covar_type]
        gmm = GaussianMixture(
            n_components=n_components,
            covariance_type=covar_type,
            reg_covar=0,
            warm_start=True,
            max_iter=1,
            random_state=rng,
            tol=1e-7,
        )
        current_log_likelihood = -np.infty
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", ConvergenceWarning)
            # Do one training iteration at a time so we can make sure that the
            # training log likelihood increases after each iteration.
            for _ in range(600):
                prev_log_likelihood = current_log_likelihood
                current_log_likelihood = gmm.fit(X).score(X)
                assert current_log_likelihood >= prev_log_likelihood

                if gmm.converged_:
                    break

            assert gmm.converged_


def test_regularisation():
    # We train the GaussianMixture on degenerate data by defining two clusters
    # of a 0 covariance.
    rng = np.random.RandomState(0)
    n_samples, n_features = 10, 5

    X = np.vstack(
        (np.ones((n_samples // 2, n_features)), np.zeros((n_samples // 2, n_features)))
    )

    for covar_type in COVARIANCE_TYPE:
        gmm = GaussianMixture(
            n_components=n_samples,
            reg_covar=0,
            covariance_type=covar_type,
            random_state=rng,
        )

        with warnings.catch_warnings():
            warnings.simplefilter("ignore", RuntimeWarning)
            msg = re.escape(
                "Fitting the mixture model failed because some components have"
                " ill-defined empirical covariance (for instance caused by "
                "singleton or collapsed samples). Try to decrease the number "
                "of components, or increase reg_covar."
            )
            with pytest.raises(ValueError, match=msg):
                gmm.fit(X)

            gmm.set_params(reg_covar=1e-6).fit(X)


def test_property():
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=7)
    n_components = rand_data.n_components

    for covar_type in COVARIANCE_TYPE:
        X = rand_data.X[covar_type]
        gmm = GaussianMixture(
            n_components=n_components,
            covariance_type=covar_type,
            random_state=rng,
            n_init=5,
        )
        gmm.fit(X)
        if covar_type == "full":
            for prec, covar in zip(gmm.precisions_, gmm.covariances_):

                assert_array_almost_equal(linalg.inv(prec), covar)
        elif covar_type == "tied":
            assert_array_almost_equal(linalg.inv(gmm.precisions_), gmm.covariances_)
        else:
            assert_array_almost_equal(gmm.precisions_, 1.0 / gmm.covariances_)


def test_sample():
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=7, n_components=3)
    n_features, n_components = rand_data.n_features, rand_data.n_components

    for covar_type in COVARIANCE_TYPE:
        X = rand_data.X[covar_type]

        gmm = GaussianMixture(
            n_components=n_components, covariance_type=covar_type, random_state=rng
        )
        # To sample we need that GaussianMixture is fitted
        msg = "This GaussianMixture instance is not fitted"
        with pytest.raises(NotFittedError, match=msg):
            gmm.sample(0)
        gmm.fit(X)

        msg = "Invalid value for 'n_samples'"
        with pytest.raises(ValueError, match=msg):
            gmm.sample(0)

        # Just to make sure the class samples correctly
        n_samples = 20000
        X_s, y_s = gmm.sample(n_samples)

        for k in range(n_components):
            if covar_type == "full":
                assert_array_almost_equal(
                    gmm.covariances_[k], np.cov(X_s[y_s == k].T), decimal=1
                )
            elif covar_type == "tied":
                assert_array_almost_equal(
                    gmm.covariances_, np.cov(X_s[y_s == k].T), decimal=1
                )
            elif covar_type == "diag":
                assert_array_almost_equal(
                    gmm.covariances_[k], np.diag(np.cov(X_s[y_s == k].T)), decimal=1
                )
            else:
                assert_array_almost_equal(
                    gmm.covariances_[k],
                    np.var(X_s[y_s == k] - gmm.means_[k]),
                    decimal=1,
                )

        means_s = np.array([np.mean(X_s[y_s == k], 0) for k in range(n_components)])
        assert_array_almost_equal(gmm.means_, means_s, decimal=1)

        # Check shapes of sampled data, see
        # https://github.com/scikit-learn/scikit-learn/issues/7701
        assert X_s.shape == (n_samples, n_features)

        for sample_size in range(1, 100):
            X_s, _ = gmm.sample(sample_size)
            assert X_s.shape == (sample_size, n_features)


@ignore_warnings(category=ConvergenceWarning)
def test_init():
    # We check that by increasing the n_init number we have a better solution
    for random_state in range(15):
        rand_data = RandomData(
            np.random.RandomState(random_state), n_samples=50, scale=1
        )
        n_components = rand_data.n_components
        X = rand_data.X["full"]

        gmm1 = GaussianMixture(
            n_components=n_components, n_init=1, max_iter=1, random_state=random_state
        ).fit(X)
        gmm2 = GaussianMixture(
            n_components=n_components, n_init=10, max_iter=1, random_state=random_state
        ).fit(X)

        assert gmm2.lower_bound_ >= gmm1.lower_bound_


def test_gaussian_mixture_setting_best_params():
    """`GaussianMixture`'s best_parameters, `n_iter_` and `lower_bound_`
    must be set appropriately in the case of divergence.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/18216
    """
    rnd = np.random.RandomState(0)
    n_samples = 30
    X = rnd.uniform(size=(n_samples, 3))

    # following initialization parameters were found to lead to divergence
    means_init = np.array(
        [
            [0.670637869618158, 0.21038256107384043, 0.12892629765485303],
            [0.09394051075844147, 0.5759464955561779, 0.929296197576212],
            [0.5033230372781258, 0.9569852381759425, 0.08654043447295741],
            [0.18578301420435747, 0.5531158970919143, 0.19388943970532435],
            [0.4548589928173794, 0.35182513658825276, 0.568146063202464],
            [0.609279894978321, 0.7929063819678847, 0.9620097270828052],
        ]
    )
    precisions_init = np.array(
        [
            999999.999604483,
            999999.9990869573,
            553.7603944542167,
            204.78596008931834,
            15.867423501783637,
            85.4595728389735,
        ]
    )
    weights_init = [
        0.03333333333333341,
        0.03333333333333341,
        0.06666666666666674,
        0.06666666666666674,
        0.7000000000000001,
        0.10000000000000007,
    ]

    gmm = GaussianMixture(
        covariance_type="spherical",
        reg_covar=0,
        means_init=means_init,
        weights_init=weights_init,
        random_state=rnd,
        n_components=len(weights_init),
        precisions_init=precisions_init,
        max_iter=1,
    )
    # ensure that no error is thrown during fit
    gmm.fit(X)

    # check that the fit did not converge
    assert not gmm.converged_

    # check that parameters are set for gmm
    for attr in [
        "weights_",
        "means_",
        "covariances_",
        "precisions_cholesky_",
        "n_iter_",
        "lower_bound_",
    ]:
        assert hasattr(gmm, attr)


@pytest.mark.parametrize(
    "init_params", ["random", "random_from_data", "k-means++", "kmeans"]
)
def test_init_means_not_duplicated(init_params, global_random_seed):
    # Check that all initialisations provide not duplicated starting means
    rng = np.random.RandomState(global_random_seed)
    rand_data = RandomData(rng, scale=5)
    n_components = rand_data.n_components
    X = rand_data.X["full"]

    gmm = GaussianMixture(
        n_components=n_components, init_params=init_params, random_state=rng, max_iter=0
    )
    gmm.fit(X)

    means = gmm.means_
    for i_mean, j_mean in itertools.combinations(means, r=2):
        assert not np.allclose(i_mean, j_mean)


@pytest.mark.parametrize(
    "init_params", ["random", "random_from_data", "k-means++", "kmeans"]
)
def test_means_for_all_inits(init_params, global_random_seed):
    # Check fitted means properties for all initializations
    rng = np.random.RandomState(global_random_seed)
    rand_data = RandomData(rng, scale=5)
    n_components = rand_data.n_components
    X = rand_data.X["full"]

    gmm = GaussianMixture(
        n_components=n_components, init_params=init_params, random_state=rng
    )
    gmm.fit(X)

    assert gmm.means_.shape == (n_components, X.shape[1])
    assert np.all(X.min(axis=0) <= gmm.means_)
    assert np.all(gmm.means_ <= X.max(axis=0))
    assert gmm.converged_


def test_max_iter_zero():
    # Check that max_iter=0 returns initialisation as expected
    # Pick arbitrary initial means and check equal to max_iter=0
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=5)
    n_components = rand_data.n_components
    X = rand_data.X["full"]
    means_init = [[20, 30], [30, 25]]
    gmm = GaussianMixture(
        n_components=n_components,
        random_state=rng,
        means_init=means_init,
        tol=1e-06,
        max_iter=0,
    )
    gmm.fit(X)

    assert_allclose(gmm.means_, means_init)


def test_gaussian_mixture_precisions_init_diag():
    """Check that we properly initialize `precision_cholesky_` when we manually
    provide the precision matrix.

    In this regard, we check the consistency between estimating the precision
    matrix and providing the same precision matrix as initialization. It should
    lead to the same results with the same number of iterations.

    If the initialization is wrong then the number of iterations will increase.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/16944
    """
    # generate a toy dataset
    n_samples = 300
    rng = np.random.RandomState(0)
    shifted_gaussian = rng.randn(n_samples, 2) + np.array([20, 20])
    C = np.array([[0.0, -0.7], [3.5, 0.7]])
    stretched_gaussian = np.dot(rng.randn(n_samples, 2), C)
    X = np.vstack([shifted_gaussian, stretched_gaussian])

    # common parameters to check the consistency of precision initialization
    n_components, covariance_type, reg_covar, random_state = 2, "diag", 1e-6, 0

    # execute the manual initialization to compute the precision matrix:
    # - run KMeans to have an initial guess
    # - estimate the covariance
    # - compute the precision matrix from the estimated covariance
    resp = np.zeros((X.shape[0], n_components))
    label = (
        KMeans(n_clusters=n_components, n_init=1, random_state=random_state)
        .fit(X)
        .labels_
    )
    resp[np.arange(X.shape[0]), label] = 1
    _, _, covariance = _estimate_gaussian_parameters(
        X, resp, reg_covar=reg_covar, covariance_type=covariance_type
    )
    precisions_init = 1 / covariance

    gm_with_init = GaussianMixture(
        n_components=n_components,
        covariance_type=covariance_type,
        reg_covar=reg_covar,
        precisions_init=precisions_init,
        random_state=random_state,
    ).fit(X)

    gm_without_init = GaussianMixture(
        n_components=n_components,
        covariance_type=covariance_type,
        reg_covar=reg_covar,
        random_state=random_state,
    ).fit(X)

    assert gm_without_init.n_iter_ == gm_with_init.n_iter_
    assert_allclose(
        gm_with_init.precisions_cholesky_, gm_without_init.precisions_cholesky_
    )


def test_gaussian_mixture_single_component_stable():
    """
    Non-regression test for #23032 ensuring 1-component GM works on only a
    few samples.
    """
    rng = np.random.RandomState(0)
    X = rng.multivariate_normal(np.zeros(2), np.identity(2), size=3)
    gm = GaussianMixture(n_components=1)
    gm.fit(X).sample()